IEEE Trans Pattern Anal Mach Intell
October 2022
We consider the problem of predicting a response Y from a set of covariates X when test- and training distributions differ. Since such differences may have causal explanations, we consider test distributions that emerge from interventions in a structural causal model, and focus on minimizing the worst-case risk. Causal regression models, which regress the response on its direct causes, remain unchanged under arbitrary interventions on the covariates, but they are not always optimal in the above sense.
View Article and Find Full Text PDF