Publications by authors named "Martin Eckstein"

SrIrO has attracted considerable attention due to its structural and electronic similarities to LaCuO, the parent compound of high- superconducting cuprates. It was proposed as a strong spin-orbit-coupled = 1/2 Mott insulator, but the Mott nature of its insulating ground state has not been conclusively established. Here, we use ultrafast laser pulses to realize an insulator-metal transition in SrIrO and probe the resulting dynamics using time- and angle-resolved photoemission spectroscopy.

View Article and Find Full Text PDF

A description of long-lived photodoped states in Mott insulators is challenging, as it needs to address exponentially separated timescales. We demonstrate how properties of such states can be computed using numerically exact steady state techniques, in particular, the quantum Monte Carlo algorithm, by using a time-local ansatz for the distribution function with separate Fermi functions for the electron and hole quasiparticles. The simulations show that the Mott gap remains robust to large photodoping, and the photodoped state has hole and electron quasiparticles with strongly renormalized properties.

View Article and Find Full Text PDF

Placing quantum materials into optical cavities provides a unique platform for controlling quantum cooperative properties of matter, by both weak and strong light-matter coupling. Here we report experimental evidence of reversible cavity control of a metal-to-insulator phase transition in a correlated solid-state material. We embed the charge density wave material 1T-TaS into cryogenic tunable terahertz cavities and show that a switch between conductive and insulating behaviours, associated with a large change in the sample temperature, is obtained by mechanically tuning the distance between the cavity mirrors and their alignment.

View Article and Find Full Text PDF

We investigate the impact of a bosonic degree of freedom on Yu-Shiba-Rusinov states emerging from a magnetic impurity in a conventional superconductor. Starting from the Anderson impurity model, we predict that an additional p-wave conduction band channel opens up if a bosonic mode is coupled to the tunneling between impurity and host, which implies an additional pair of odd-parity Yu-Shiba-Rusinov states. The bosonic mode can be a vibrational mode or the electromagnetic field in a cavity.

View Article and Find Full Text PDF

We propose a diagrammatic Monte Carlo approach for quantum impurity models, which can be regarded as a generalization of the strong-coupling expansion for fermionic impurity models. The algorithm is based on a self-consistently computed three-point vertex and a stochastically sampled four-point vertex, and it allows one to obtain numerically exact results in a wide parameter regime. The performance of the algorithm is demonstrated with applications to a spin-boson model representing an emitter in a waveguide.

View Article and Find Full Text PDF

We overview the concept of dynamical phase transitions (DPTs) in isolated quantum systems quenched out of equilibrium. We focus on non-equilibrium transitions characterized by an order parameter, which features qualitatively distinct temporal behavior on the two sides of a certain dynamical critical point. DPTs are currently mostly understood as long-lived prethermal phenomena in a regime where inelastic collisions are incapable to thermalize the system.

View Article and Find Full Text PDF

Intertwined orders exist ubiquitously in strongly correlated electronic systems and lead to intriguing phenomena in quantum materials. In this Letter, we explore the unique opportunity of manipulating intertwined orders through entangling electronic states with quantum light. Using a quantum Floquet formalism to study the cavity-mediated interaction, we show the vacuum fluctuations effectively enhance the charge-density-wave correlation, giving rise to a phase with entangled electronic order and photon coherence, with putative superradiant behaviors in the thermodynamic limit.

View Article and Find Full Text PDF

An elusive goal in the field of driven quantum matter is the induction of long-range order. Here, we propose a mechanism based on light-induced evaporative cooling of holes in a correlated fermionic system. Since the entropy of a filled narrow band grows rapidly with hole doping, the isentropic transfer of holes from a doped Mott insulator to such a band results in a drop of temperature.

View Article and Find Full Text PDF

We perform an ab initio comparison between nonequilibrium dynamical mean-field theory and optical lattice experiments by studying the time evolution of double occupations in the periodically driven Fermi-Hubbard model. For off-resonant driving, the range of validity of a description in terms of an effective static Hamiltonian is determined and its breakdown due to energy absorption close to resonance is demonstrated. For near-resonant driving, we investigate the response to a change in driving amplitude and discover an asymmetric excitation spectrum with respect to the detuning.

View Article and Find Full Text PDF

Photo-induced hidden phases are often observed in materials with intertwined orders. Understanding the formation of these non-thermal phases is challenging and requires a resolution of the cooperative interplay between different orders on the ultra-short timescale. In this work, we demonstrate that non-equilibrium photo-excitations can induce a state with spin-orbital orders entirely different from the equilibrium state in the three-quarter-filled two-band Hubbard model.

View Article and Find Full Text PDF

Time-resolved valence photoelectron spectroscopy is an established tool for studies of ultrafast molecular dynamics in the gas phase. Here we demonstrate time-resolved XUV photoelectron spectroscopy from dilute aqueous solutions of organic molecules, paving the way to application of this method to photodynamics studies of organic molecules in natural environments, which so far have only been accessible to all-optical transient spectroscopies. We record static and time-resolved photoelectron spectra of a sample molecule, quinoline yellow WS, analyze its electronic structure, and follow the relaxation dynamics upon excitation with 400 nm pulses.

View Article and Find Full Text PDF

Using Floquet dynamical mean-field theory, we study the high-harmonic generation in the time-periodic steady states of wide-gap Mott insulators under ac driving. In the strong-field regime, the harmonic intensity exhibits multiple plateaus, whose cutoff energies ε_{cut}=U+mE_{0} scale with the Coulomb interaction U and the maximum field strength E_{0}. In this regime, the created doublons and holons are localized because of the strong field and the mth plateau originates from the recombination of mth nearest-neighbor doublon-holon pairs.

View Article and Find Full Text PDF

We study the dynamics of excitonic insulators coupled to phonons using the time-dependent mean-field theory. Without phonon couplings, the linear response is given by the damped amplitude oscillations of the order parameter with a frequency equal to the minimum band gap. A phonon coupling to the interband transfer integral induces two types of long-lived collective oscillations of the amplitude, one originating from the phonon dynamics and the other from the phase mode, which becomes massive.

View Article and Find Full Text PDF

We show that, in optical pump-probe experiments on bulk samples, the statistical distribution of the intensity of ultrashort light pulses after interaction with a nonequilibrium complex material can be used to measure the time-dependent noise of the current in the system. We illustrate the general arguments for a photoexcited Peierls material. The transient noise spectroscopy allows us to measure to what extent electronic degrees of freedom dynamically obey the fluctuation-dissipation theorem, and how well they thermalize during the coherent lattice vibrations.

View Article and Find Full Text PDF

We report on the nonequilibrium dynamics of the electronic structure of the layered semiconductor Ta_{2}NiSe_{5} investigated by time- and angle-resolved photoelectron spectroscopy. We show that below the critical excitation density of F_{C}=0.2  mJ cm^{-2}, the band gap narrows transiently, while it is enhanced above F_{C}.

View Article and Find Full Text PDF

We study the dynamics of screening in photodoped Mott insulators with long-ranged interactions using a nonequilibrium implementation of the GW plus extended dynamical mean-field theory formalism. Our study demonstrates that the complex interplay of the injected carriers with bosonic degrees of freedom (charge fluctuations) can result in long-lived transient states with properties that are distinctly different from those of thermal equilibrium states. Systems with strong nonlocal interactions are found to exhibit a self-sustained population inversion of the doublons and holes.

View Article and Find Full Text PDF

An autoionizing resonance in molecular N is excited by an ultrashort XUV pulse and probed by a subsequent weak IR pulse, which ionizes the contributing Rydberg states. Time- and angular-resolved photoelectron spectra recorded with a velocity map imaging spectrometer reveal two electronic contributions with different angular distributions. One of them has an exponential decay rate of 20 ± 5 fs, while the other one is shorter than 10 fs.

View Article and Find Full Text PDF

We investigate the time-dependent reformation of the quasiparticle peak in a correlated metal near the Mott transition, after the system is quenched into a hot electron state and equilibrates with an environment which is colder than the Fermi-liquid crossover temperature. Close to the transition, we identify a purely electronic bottleneck time scale, which depends on the spectral weight around the Fermi energy in the bad metallic phase in a nonlinear way. This time scale can be orders of magnitude larger than the bare and renormalized electronic hopping time, so that a separation of electronic and lattice time scales may break down.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on autoionizing Rydberg states of molecular N₂ using advanced photoelectron spectroscopy techniques to analyze the dynamics.
  • A femtosecond extreme ultraviolet pulse excites the molecule, followed by an IR pulse that ionizes it prior to autoionization, allowing observation of different electronic states.
  • The measurements reveal a lifetime of approximately 14 fs for one state, while another state has a shorter lifetime, indicating complex interactions in the Rydberg states due to interference stabilization.
View Article and Find Full Text PDF

Ultra-fast spectroscopy can reveal the interplay of charges with low energy degrees of freedom, which underlies the rich physics of correlated materials. As a potential glue for superconductivity, spin fluctuations in Mott insulators are of particular interest. A theoretical description of the coupled spin and charge degrees of freedom is challenging, because magnetic order is often only short-lived and short-ranged.

View Article and Find Full Text PDF

Time-periodic driving provides a promising route toward engineering nontrivial states in quantum many-body systems. However, while it has been shown that the dynamics of integrable, noninteracting systems can synchronize with the driving into a nontrivial periodic motion, generic nonintegrable systems are expected to heat up until they display a trivial infinite-temperature behavior. In this paper we show that a quasiperiodic time evolution over many periods can also emerge in weakly interacting systems, with a clear separation of the timescales for synchronization and the eventual approach of the infinite-temperature state.

View Article and Find Full Text PDF

Hirsch's dynamic Hubbard model describes the effect of orbital expansion with occupancy by coupling the doublon operator to an auxiliary boson. In the Mott insulating phase, empty sites (holes) and doubly occupied orbitals (doublons) become charge carriers on top of the half-filled background. We use the nonequilibrium dynamical mean field method to study the properties of photo-doped doublons and holes in this model in the strongly correlated regime.

View Article and Find Full Text PDF

Ionization of nitrogen by extreme ultraviolet (XUV) light from the Sun has recently been recognized as an important driver of chemical reactions in the atmosphere of Titan. XUV photons with energies of 24 eV and above convert inert nitrogen molecules into reactive neutral and ionic fragments that initiate chemical reactions. Understanding the XUV-induced fragmentation poses significant challenges to modern theory owing to its ultrafast time scales, complex electronic rearrangements, and strong dependence on the XUV photon energy.

View Article and Find Full Text PDF

We modulate the atomic structure of bilayer graphene by driving its lattice at resonance with the in-plane E_{1u} lattice vibration at 6.3  μm. Using time- and angle-resolved photoemission spectroscopy (tr-ARPES) with extreme-ultraviolet (XUV) pulses, we measure the response of the Dirac electrons near the K point.

View Article and Find Full Text PDF

Recently, dynamical phase transitions have been identified based on the nonanalytic behavior of the Loschmidt echo in the thermodynamic limit [Heyl et al., Phys. Rev.

View Article and Find Full Text PDF