Publications by authors named "Martin E Lynge"

The success of polymer coatings for biomedical applications is undeniable. Among the very successful examples are poly(dopamine) (PDA) films due to their simplicity in deposition and beneficial interaction with biomolecules and cells. The aim of this review is to highlight the findings and achievement of PDA in nanomedicine since 2011.

View Article and Find Full Text PDF

Recently, the combination of lipids and block copolymers has become an alternative to liposomes and polymersomes as nano-sized drug carriers. We synthesize novel block copolymers consisting of poly(cholesteryl acrylate) as the hydrophobic core and poly(N-isopropylacrylamide) (PNIPAAm) as the hydrophilic extensions. Their successful phospholipid-assisted assembly into vesicles is demonstrated using the evaporation-hydration method.

View Article and Find Full Text PDF

Engineered polymer films are of significant importance in the field of biomedicine. Poly(dopamine) (PDA) is becoming more and more a key player in this context. Herein, we deposited mixed films consisting of PDA and poly(L-lysine) (PLL) of different molecular weights.

View Article and Find Full Text PDF

Liposomes, spherical vesicles consisting of one or more lipid bilayer membrane(s) encapsulating an aqueous medium, are among the prominent players in the field of nanomedicine. Herein, we highlight the newest, atypical applications of liposomes towards their use in biomedicine. In particular, we put special emphasis on innovative chemical modification of liposomes, the interactions of liposomes with cells under the influence of shear stress, and the utilisation of liposomes as drug deposits in polymeric films and as components in synthetic cell mimics.

View Article and Find Full Text PDF

Implantable devices equipped with coatings which have the ability to carry and deliver active compounds are of great interest. We report the assembly of liposome-containing poly(dopamine) films, and their interaction with adhering cells. The liposome composition is varied by adding lipophilic dopamine-conjugates and charged lipids.

View Article and Find Full Text PDF

Liposomes are important components for biomedical applications. Their unique architecture and versatile nature have made them useful carriers for the delivery of therapeutic cargo. The scope of this minireview is to highlight recent developments of biomimetic liposome-based multicompartmentalized assemblies of polymer thin films and colloidal carriers, and to outline a selection of recent applications of these materials in bionanotechnology.

View Article and Find Full Text PDF

Designing surfaces to deliver therapeutic compounds to adhering cells is of paramount importance for both implantable devices and tissue engineering. We report the assembly of composite films consisting of liposomes as drug deposits in a poly(dopamine) matrix. We monitor the film assembly using a quartz crystal microbalance with dissipation.

View Article and Find Full Text PDF

The ex vivo growth of implantable hepatic or cardiac tissue remains a challenge and novel approaches are highly sought after. We report an approach to use liposomes embedded within multilayered films as drug deposits to deliver active cargo to adherent cells. We verify and characterize the assembly of poly(l-lysine) (PLL)/alginate, PLL/poly(l-glutamic acid), PLL/poly(methacrylic acid) (PMA), and PLL/cholesterol-modified PMA (PMAc) films, and assess the myoblast and hepatocyte adhesion to these coatings using different numbers of polyelectrolyte layers.

View Article and Find Full Text PDF

Polymer coatings are of central importance for many biomedical applications. In the past few years, poly(dopamine) (PDA) has attracted considerable interest for various types of biomedical applications. This feature article outlines the basic chemistry and material science regarding PDA and discusses its successful application from coatings for interfacing with cells, to drug delivery and biosensing.

View Article and Find Full Text PDF

Surface-mediated drug delivery is a recent concept, where active surface coatings are employed to deliver therapeutic cargo to cells. Herein, we explore the potential of liposomes embedded in polydopamine (PDA) coatings to serve as drug deposits stored on planar substrates. We quantify the PDA growth rate on glass by XPS and show that PDA coatings support myoblast adherence and proliferation.

View Article and Find Full Text PDF