Context: Bone marrow (BM) in adult long bones is rich in adipose tissue, but the functions of BM adipocytes are largely unknown. We set out to elucidate the metabolic and molecular characteristics of BM adipose tissue (BMAT) in humans.
Objective: Our aim was to determine if BMAT is an insulin-sensitive tissue, and whether the insulin sensitivity is altered in obesity or type 2 diabetes (T2DM).
Adaptation to the environment and extraction of energy are essential for survival. Some species have found niches and specialized in using a particular source of energy, whereas others-including humans and several other mammals-have developed a high degree of flexibility. A lot is known about the general metabolic fates of different substrates but we still lack a detailed mechanistic understanding of how cells adapt in their use of basic nutrients.
View Article and Find Full Text PDFRecruitment and activation of thermogenic adipocytes have received increasing attention as a strategy to improve systemic metabolic control. The analysis of brown and brite adipocytes is complicated by the complexity of adipose tissue biopsies. Here, we provide an in-depth analysis of pure brown, brite, and white adipocyte transcriptomes.
View Article and Find Full Text PDFAdapting to the cold extrauterine environment after birth is a great challenge for the newborn. Due to their high surface area-to-volume ratio, infants tend to lose more heat to the environment as compared to adults. In addition, human newborns lack sufficiently developed skeletal muscle mass to maintain body temperature through shivering thermogenesis, an important source of heat in cold-exposed adults.
View Article and Find Full Text PDFPeroxisome proliferator-activated receptors (PPARs) have been suggested as the master regulators of adipose tissue formation. However, their role in regulating brown fat functionality has not been resolved. To address this question, we generated mice with inducible brown fat-specific deletions of PPARα, β/δ, and γ, respectively.
View Article and Find Full Text PDFObjective: To study if repeated cold-exposure increases metabolic rate and/or brown adipose tissue (BAT) volume in humans when compared with avoiding to freeze.
Design: Randomized, open, parallel-group trial.
Methods: Healthy non-selected participants were randomized to achieve cold-exposure 1hour/day, or to avoid any sense of feeling cold, for 6weeks.
Brown adipose tissue (BAT) dissipates nutritional energy as heat via the uncoupling protein-1 (UCP1) and BAT activity correlates with leanness in human adults. Here we profile G protein-coupled receptors (GPCRs) in brown adipocytes to identify druggable regulators of BAT. Twenty-one per cent of the GPCRs link to the Gq family, and inhibition of Gq signalling enhances differentiation of human and murine brown adipocytes.
View Article and Find Full Text PDFBackground: To evaluate the possibility of quantifying brown adipose tissue (BAT) volume and fat concentration with a high resolution, long echo time, dual-echo Dixon imaging protocol.
Methods: A 0.42 mm isotropic resolution water-fat separated MRI protocol was implemented by using the second opposite-phase echo and third in-phase echo.
Brown adipose tissue (BAT) is specialized in energy expenditure, making it a potential target for anti-obesity therapies. Following exposure to cold, BAT is activated by the sympathetic nervous system with concomitant release of catecholamines and activation of β-adrenergic receptors. Because BAT therapies based on cold exposure or β-adrenergic agonists are clinically not feasible, alternative strategies must be explored.
View Article and Find Full Text PDFBrown adipose tissue (BAT) has attracted scientific interest as an antidiabetic tissue owing to its ability to dissipate energy as heat. Despite a plethora of data concerning the role of BAT in glucose metabolism in rodents, the role of BAT (if any) in glucose metabolism in humans remains unclear. To investigate whether BAT activation alters whole-body glucose homeostasis and insulin sensitivity in humans, we studied seven BAT-positive (BAT(+)) men and five BAT-negative (BAT(-)) men under thermoneutral conditions and after prolonged (5-8 h) cold exposure (CE).
View Article and Find Full Text PDFDuring the last years the existence of metabolically active brown adipose tissue in adult humans has been widely accepted by the research community. Its unique ability to dissipate chemical energy stored in triglycerides as heat makes it an attractive target for new drugs against obesity and its related diseases. Hence the tissue is now subject to intense research, the hypothesis being that an expansion and/or activation of the tissue is associated with a healthy metabolic phenotype.
View Article and Find Full Text PDFContext: Brown adipose tissue (BAT) is a metabolically highly active organ with increased thermogenic activity in rodents exposed to cold temperature. Recently its presence in the cervical adipose tissue of human adults and its association with a favorable metabolic phenotype have been reported.
Objective: The objective of the study was to determine the prevalence of retroperitoneal BAT in human adults.
The previously observed supraclavicular depot of brown adipose tissue (BAT) in adult humans was commonly believed to be the equivalent of the interscapular thermogenic organ of small mammals. This view was recently disputed on the basis of the demonstration that this depot consists of beige (also called brite) brown adipocytes, a newly identified type of brown adipocyte that is distinct from the classical brown adipocytes that make up the interscapular thermogenic organs of other mammals. A combination of high-resolution imaging techniques and histological and biochemical analyses showed evidence for an anatomically distinguishable interscapular BAT (iBAT) depot in human infants that consists of classical brown adipocytes, a cell type that has so far not been shown to exist in humans.
View Article and Find Full Text PDFWe investigated the metabolism of human brown adipose tissue (BAT) in healthy subjects by determining its cold-induced and insulin-stimulated glucose uptake and blood flow (perfusion) using positron emission tomography (PET) combined with computed tomography (CT). Second, we assessed gene expression in human BAT and white adipose tissue (WAT). Glucose uptake was induced 12-fold in BAT by cold, accompanied by doubling of perfusion.
View Article and Find Full Text PDFObjective: Combination antiretroviral therapy (cART) is associated with lipodystrophy, i.e., loss of subcutaneous adipose tissue in the abdomen, limbs, and face and its accumulation intra-abdominally.
View Article and Find Full Text PDFObjective: Previous findings demonstrate that enhanced expression of the forkhead transcription factor Foxc2 in adipose tissue leads to a lean and insulin-sensitive phenotype. These findings prompted us to further investigate the role of Foxc2 in the regulation of genes of fundamental importance for metabolism and mitochondrial function.
Research Design And Methods: The effects of Foxc2 on expression of genes involved in mitochondriogenesis and mitochondrial function were assessed by quantitative real-time PCR.
New targets for pharmacological interventions are of great importance to combat the epidemic of obesity. Brown adipose tissue could potentially represent one such target. Unlike white adipose tissue, brown adipose tissue has the ability to dissipate energy by producing heat rather than storing it as triglycerides.
View Article and Find Full Text PDFUsing positron-emission tomography (PET), we found that cold-induced glucose uptake was increased by a factor of 15 in paracervical and supraclavicular adipose tissue in five healthy subjects. We obtained biopsy specimens of this tissue from the first three consecutive subjects and documented messenger RNA (mRNA) and protein levels of the brown-adipocyte marker, uncoupling protein 1 (UCP1). Together with morphologic assessment, which showed numerous multilocular, intracellular lipid droplets, and with the results of biochemical analysis, these findings document the presence of substantial amounts of metabolically active brown adipose tissue in healthy adult humans.
View Article and Find Full Text PDFIn this study, we explore the effects of several FOX and mutant FOX transcription factors on adipocyte determination, differentiation, and metabolism. In addition to Foxc2 and Foxo1, we report that Foxf2, Foxp1, and Foxa1 are other members of the Fox family that show regulated expression during adipogenesis. Although enforced expression of FOXC2 inhibits adipogenesis, Foxf2 slightly enhances the rate of differentiation.
View Article and Find Full Text PDFMUC1 is a mucin glycoprotein containing multiple tandem repeats of 20 amino acids, with five serines and threonines that can be O-glycosylated. Here, we investigated the O-glycosylation site occupancy in MUC1 glycoproteins produced in two mutant CHO cell lines, Lec3.2.
View Article and Find Full Text PDFMucins are large glycoproteins protecting mucosal surfaces throughout the body. Their expressions are tissue-specific, but in disease states such as cystic fibrosis, inflammation and cancer, this specificity can be disturbed. MUC5AC is normally expressed in the mucous cells of the epithelia lining the stomach and the trachea, where it constitutes a major component of the gastric and respiratory mucus.
View Article and Find Full Text PDFMUC5AC is the main gel-forming mucin expressed by goblet cells of the airways and stomach where it protects the underlying epithelia. We expressed the C-terminal cysteine-rich part of the human MUC5AC mucin in CHO-K1 cells (Chinese-hamster ovary K1 cells) where it formed disulfide-linked dimers in the ER (endoplasmic reticulum). After reducing the disulfide bonds of these dimers, not only the expected monomers were found, but also two smaller fragments, indicating that the protein was partially cleaved.
View Article and Find Full Text PDFIn order for the protozoan parasite Entamoeba histolytica (E.h.) to cause invasive intestinal and extraintestinal infection, which leads to significant morbidity and mortality, it must disrupt the protective mucus layer by a previously unknown mechanism.
View Article and Find Full Text PDFBackground: In a hitherto unconfirmed report, orosomucoid was reported to ameliorate the nephrotic syndrome induced by puromycin aminonucleoside (PAN) in rats.
Methods: We wanted to test this hypothesis and extend the analysis of the effects on the glomerular barrier. Glomerular filtration rate (GFR), and fractional clearance for albumin (theta(albumin)) and for neutral Ficolls were estimated in cooled isolated perfused kidneys.