Publications by authors named "Martin E Bluhm"

The rate and extent of H(2)-release from ammonia borane (AB), a promising, high-capacity hydrogen storage material, was found to be enhanced in ionic-liquid solutions. For example, AB reactions in 1-butyl-3-methylimidazolium chloride (bmimCl) (50:50-wt %) exhibited no induction period and released 1.0 H(2)-equiv in 67 min and 2.

View Article and Find Full Text PDF

The strong non-nucleophilic base bis(dimethylamino)naphthalene (Proton Sponge, PS) has been found to promote the rate and extent of H(2)-release from ammonia borane (AB) either in the solid state or in ionic-liquid and tetraglyme solutions. For example, AB reactions in 1-butyl-3-methylimidazolium chloride (bmimCl) containing 5.3 mol % PS released 2 equiv of H(2) in 171 min at 85 degrees C and only 9 min at 110 degrees C, whereas comparable reactions without PS required 316 min at 85 degrees C and 20 min at 110 degrees C.

View Article and Find Full Text PDF

Ionic liquids are shown to provide advantageous media for amineborane-based chemical hydrogen storage systems. Both the extent and rate of hydrogen release from ammonia borane dehydrogenation are significantly increased at 85, 90, and 95 degrees C when the reactions are carried out in 1-butyl-3-methylimidazolium chloride compared to analogous solid-state reactions. NMR studies in conjunction with DFT/GIAO chemical shift calculations indicate that both polyaminoborane and the diammoniate of diborane, [(NH3)2BH2+]BH4-, are initial products in the reactions.

View Article and Find Full Text PDF

Electronic interactions and metal-metal communication in a wide range of cobaltacarborane-hydrocarbon complexes containing one to six metal centers, and exhibiting a variety of modes of inter-cage connectivity and molecular architectures, have been investigated via cyclic voltammetry, controlled potential coulometry, and UV-visible spectroelectrochemistry. The properties of mixed-valent Co(III)/Co(IV) and Co(II)/Co(III) species that are generated on oxidation or reduction of dinuclear and polynuclear Co(III) complexes were examined and classified as Robin-Day Class I (localized), Class II (partially delocalized), or Class III (fully delocalized) systems. The extent of metal-metal communication between metallacarborane cage units is strongly influenced by the type of intercage connection (e.

View Article and Find Full Text PDF

After complexation with copper(II) ions, Schiff bases 1a-d may undergo an oxidative ring closure using atmospheric oxygen to give a number of imidazo[1,5-a]pyridines 2, an imidazo[1,5-a]imidazole 3, and an imidazo[5,1-a]isochinoline 4. This ligand oxidation can be performed with catalytic amounts of copper ions in the reaction. A catalytic cycle for the copper-catalyzed oxidative heterocyclization will be presented together with isolated copper complexes of Schiff bases 1a,b and intermediates 5 and 8 that were found by X-ray structure analyses which confirm this reaction scheme.

View Article and Find Full Text PDF

First identified as a neutrophil granule component, neutrophil gelatinase-associated lipocalin (NGAL; also called human neutrophil lipocalin, 24p3, uterocalin, or neu-related lipocalin) is a member of the lipocalin family of binding proteins. Putative NGAL ligands, including neutrophil chemotactic agents such as N-formylated tripeptides, have all been refuted by recent biochemical and structural results. NGAL has subsequently been implicated in diverse cellular processes, but without a characterized ligand, the molecular basis of these functions remained mysterious.

View Article and Find Full Text PDF

Because the hydrolysis of ferric ion makes it very insoluble in aerobic, near neutral pH environments, most species of bacteria produce siderophores to acquire iron, an essential nutrient. The chirality of the ferric siderophore complex plays an important role in cell recognition, uptake, and utilization. Corynebactin, isolated from Gram-positive bacteria, is structurally similar to enterobactin, a well-known siderophore first isolated from Gram-negative bacteria, but contains L-threonine instead of L-serine in the trilactone backbone.

View Article and Find Full Text PDF

Most species of bacteria employ siderophores to acquire iron. The chirality of the ferric siderophore complex plays an important role in cell recognition, uptake, and utilization. Corynebactin, isolated from Gram-positive bacteria, is structurally similar to enterobactin, a well known siderophore isolated from Gram-negative bacteria, but contains L-theronine instead of L-serine in the trilactone backbone.

View Article and Find Full Text PDF