Multifunctional composites have been continuously developed for a myriad of applications with remarkable adaptability to external stimuli and dynamic responsiveness. This study introduces a 4D printing method for liquid crystal elastomer (LCE) composites with continuous fibers and unveils their multifunctional actuation and exciting mechanical responses. During the printing process, the relative motion between the continuous fiber and LCE resin generates shear force to align mesogens and enable the monodomain state of the matrix materials.
View Article and Find Full Text PDFExtrusion-based 3D printing methods with in-nozzle impregnation mechanisms have been extensively employed in the fabrication of continuous fiber composites. This study presents an innovative embedded 3D printing technique that addresses significant challenges associated with existing methods. The technique utilizes a deposition nozzle to precisely write continuous fibers below the resin.
View Article and Find Full Text PDFThis perspective article summarizes recent advancements in extrusion-based 3D printing of continuous fiber-reinforced polymers (CFRPs). It focuses on manufacturing techniques and computational design methodologies. While fused deposition modeling has been the primary method for printing thermoplastic CFRPs, recent innovations have enabled the printing of thermoset CFRPs using direct ink writing or similar techniques.
View Article and Find Full Text PDFCross-neutralizing activity of human antibody response against Dengue virus complex (DENV) changes importantly over time. Domain III (DIII) of the envelope protein of DENV elicits a potently neutralizing and mostly type-specific IgG response. We used sera from 24 individuals from early- or late convalescence of DENV1 infection to investigate the evolution of anti-DIII human IgG with the time lapse since the infection.
View Article and Find Full Text PDFMicroPubl Biol
November 2023
Dengue complex is formed by four viral serotypes that cause the disease of the same name. Dengue is the arthropod-borne disease with the highest incidence worldwide. The envelope glycoprotein comprises three structural domains.
View Article and Find Full Text PDFAdvanced manufacturing methods like multi-material additive manufacturing are enabling realization of multiscale materials with intricate spatially varying microstructures and thus, material properties. This blurs the boundary between material and structure, paving the way to lighter, stiffer, and stronger structures. Taking advantage of these tunable multiscale materials warrants development of novel design methods that effectively marry the concepts of material and structure.
View Article and Find Full Text PDFVitrimers have the characteristics of shape-reforming and surface-welding, and have the same excellent mechanical properties as thermosets; so vitrimers hold the promise of a broad alternative to traditional plastics. Since their initial introduction in 2011, vitrimers have been applied to many unique applications such as reworkable composites and liquid crystal elastomer actuators. A series of experiments have investigated the effects of reprocessing conditions (such as temperature, time, and pressure) on recycled materials.
View Article and Find Full Text PDFVitrimers are a new class of thermosetting polymers that can be thermally processed through bond exchange reactions (BERs) without losing network integrity. In engineering applications, the tunability of their thermomechanical properties is highly desirable to meet the requirements of different working conditions. Here, we report a simple composite-based strategy that avoids complex chemistry to prepare vitrimer blends with tunable thermomechanical properties by virtue of the good weldability of base vitrimers.
View Article and Find Full Text PDFThe integration of emerging technologies into a complete digital thread promises to disrupt design and manufacturing workflows throughout the value chain to enable efficiency and productivity transformation, while unlocking completely new design freedom. A particularly appealing aspect involves the simultaneous design and manufacture of the macroscale structural topology and material microstructure of a product. Here we demonstrate such a workflow that digitally integrates: design automation - conception and automation of a design problem based on multiscale topology optimization; material compilation - computational geometry algorithms that create spatially-variable, physically-realizable multimaterial microstructures; and digital fabrication - fabrication of multiscale optimized components via voxel-based additive manufacturing with material jetting of multiple photo-curable polymers.
View Article and Find Full Text PDFAmong all three-dimensional (3D) printing materials, thermosetting photopolymers claim almost half of the market, and have been widely used in various fields owing to their superior mechanical stability at high temperatures, excellent chemical resistance as well as good compatibility with high-resolution 3D printing technologies. However, once these thermosetting photopolymers form 3D parts through photopolymerization, the covalent networks are permanent and cannot be reprocessed, i.e.
View Article and Find Full Text PDFWe measured the work of separation of single and few-layer MoS membranes from a SiO substrate using a mechanical blister test and found a value of 220 ± 35 mJ/m. Our measurements were also used to determine the 2D Young's modulus (E) of a single MoS layer to be 160 ± 40 N/m. We then studied the delamination mechanics of pressurized MoS bubbles, demonstrating both stable and unstable transitions between the bubbles' laminated and delaminated states as the bubbles were inflated.
View Article and Find Full Text PDFWe describe an approach to print composite polymers in high-resolution three-dimensional (3D) architectures that can be rapidly transformed to a new permanent configuration directly by heating. The permanent shape of a component results from the programmed time evolution of the printed shape upon heating via the design of the architecture and process parameters of a composite consisting of a glassy shape memory polymer and an elastomer that is programmed with a built-in compressive strain during photopolymerization. Upon heating, the shape memory polymer softens, releases the constraint on the strained elastomer, and allows the object to transform into a new permanent shape, which can then be reprogrammed into multiple subsequent shapes.
View Article and Find Full Text PDFWe present a new 4D printing approach that can create high resolution (up to a few microns), multimaterial shape memory polymer (SMP) architectures. The approach is based on high resolution projection microstereolithography (PμSL) and uses a family of photo-curable methacrylate based copolymer networks. We designed the constituents and compositions to exhibit desired thermomechanical behavior (including rubbery modulus, glass transition temperature and failure strain which is more than 300% and larger than any existing printable materials) to enable controlled shape memory behavior.
View Article and Find Full Text PDFThe creation of reversibly-actuating components that alter their shapes in a controllable manner in response to environmental stimuli is a grand challenge in active materials, structures, and robotics. Here we demonstrate a new reversible shape-changing component design concept enabled by 3D printing two stimuli responsive polymers-shape memory polymers and hydrogels-in prescribed 3D architectures. This approach uses the swelling of a hydrogel as the driving force for the shape change, and the temperature-dependent modulus of a shape memory polymer to regulate the time of such shape change.
View Article and Find Full Text PDFRecent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental temperature.
View Article and Find Full Text PDFFolding is ubiquitous in nature with examples ranging from the formation of cellular components to winged insects. It finds technological applications including packaging of solar cells and space structures, deployable biomedical devices, and self-assembling robots and airbags. Here we demonstrate sequential self-folding structures realized by thermal activation of spatially-variable patterns that are 3D printed with digital shape memory polymers, which are digital materials with different shape memory behaviors.
View Article and Find Full Text PDFLarge arrays of 3-terminal nanoelectromechanical graphene switches are fabricated. The switch is designed with a novel geometry that leads to low actuation voltages and improved mechanical integrity, while reducing adhesion forces, which improves the reliability of the switch. A finite element model including non-linear electromechanics is used to simulate the switching behavior and to deduce a scaling relation between the switching voltage and device dimensions.
View Article and Find Full Text PDFWe created graphene blisters that cover and seal an annular cylinder-shaped microcavity in a SiO2 substrate filled with a gas. By controlling the pressure difference between the gas inside and outside of the microcavity, we switch the graphene membrane between multiple stable equilibrium configurations. We carried out experiments starting from the situation where the pressure of the gas inside and outside of the microcavity is set equal to a prescribed charging pressure, p0 and the graphene membrane covers the cavity like an annular drum, adhered to the central post and the surrounding substrate due to van der Waals forces.
View Article and Find Full Text PDFWe present a unique experimental configuration that allows us to determine the interfacial forces on nearly parallel plates made from the thinnest possible mechanical structures, single and few layer graphene membranes. Our approach consists of using a pressure difference across a graphene membrane to bring the membrane to within ~10-20 nm above a circular post covered with SiOx or Au until a critical point is reached whereby the membrane snaps into adhesive contact with the post. Continuous measurements of the deforming membrane with an AFM coupled with a theoretical model allow us to deduce the magnitude of the interfacial forces between graphene and SiOx and graphene and Au.
View Article and Find Full Text PDFBending rigidity and Gaussian bending stiffness are the two key parameters that govern the rippling of suspended graphene-an unavoidable phenomenon of two-dimensional materials when subject to a thermal or mechanical field. A reliable determination about these two parameters is of significance for both the design and the manipulation of graphene morphology for engineering applications. By combining the density functional theory calculations of energies of fullerenes and single wall carbon nanotubes with the configurational energy of membranes determined by Helfrich Hamiltonian, we have designed a theoretical approach to accurately determine the bending rigidity and Gaussian bending stiffness of single-layered graphene.
View Article and Find Full Text PDFAs mechanical structures enter the nanoscale regime, the influence of van der Waals forces increases. Graphene is attractive for nanomechanical systems because its Young's modulus and strength are both intrinsically high, but the mechanical behaviour of graphene is also strongly influenced by the van der Waals force. For example, this force clamps graphene samples to substrates, and also holds together the individual graphene sheets in multilayer samples.
View Article and Find Full Text PDFWe demonstrate the feasibility of using classical atomistic simulations, i.e. molecular dynamics and molecular statics, to study the piezoelectric properties of ZnO using core-shell interatomic potentials.
View Article and Find Full Text PDFThe work required to solve for the fully interacting N boson wave function, which is widely believed to scale exponentially with N, is rearranged so the problem scales order by order in a perturbation series as N0. The exponential complexity reappears in an exponential scaling with the order of our perturbation series allowing exact analytical calculations for very large N systems through low order.
View Article and Find Full Text PDFBackground: Leptomeningeal carcinomatosis (LMC) is a rare, frequently fatal complication of cranial nerve invasion by a primary cutaneous carcinoma.
Objective: Complete absence of nerve tissue was observed in retrospect in a Mohs surgery case that had subsequently proceeded to LMC. We theorized that the cancer invaded the perineural space and spread contiguously until meeting a point of resistance, in this case the mental foramen.