PRMT5 and its substrate adaptor proteins (SAPs), pICln and Riok1, are synthetic lethal dependencies in MTAP-deleted cancer cells. SAPs share a conserved PRMT5 binding motif (PBM) which mediates binding to a surface of PRMT5 distal to the catalytic site. This interaction is required for methylation of several PRMT5 substrates, including histone and spliceosome complexes.
View Article and Find Full Text PDFFascin is an actin binding and bundling protein that is not expressed in normal epithelial tissues but overexpressed in a variety of invasive epithelial tumors. It has a critical role in cancer cell metastasis by promoting cell migration and invasion. Here we report the crystal structures of fascin in complex with a series of novel and potent inhibitors.
View Article and Find Full Text PDFGlioblastoma (GBM) is an aggressive and incurable primary brain tumor that causes severe neurologic, cognitive, and psychologic symptoms. Symptoms are caused and exacerbated by the infiltrative properties of GBM cells, which enable them to pervade the healthy brain and disrupt normal function. Recent research has indicated that although radiotherapy (RT) remains the most effective component of multimodality therapy for patients with GBM, it can provoke a more infiltrative phenotype in GBM cells that survive treatment.
View Article and Find Full Text PDFExploiting oxidative stress has recently emerged as a plausible strategy for treatment of human cancer, and antioxidant defenses are implicated in resistance to chemotherapy and radiotherapy. Targeted suppression of antioxidant defenses could thus broadly improve therapeutic outcomes. Here, we identify the AMPK-related kinase NUAK1 as a key component of the antioxidant stress response pathway and reveal a specific requirement for this role of NUAK1 in colorectal cancer.
View Article and Find Full Text PDFThe myotonic dystrophy-related Cdc42-binding kinases MRCKα and MRCKβ contribute to the regulation of actin-myosin cytoskeleton organization and dynamics, acting in concert with the Rho-associated coiled-coil kinases ROCK1 and ROCK2. The absence of highly potent and selective MRCK inhibitors has resulted in relatively little knowledge of the potential roles of these kinases in cancer. Here, we report the discovery of the azaindole compounds BDP8900 and BDP9066 as potent and selective MRCK inhibitors that reduce substrate phosphorylation, leading to morphologic changes in cancer cells along with inhibition of their motility and invasive character.
View Article and Find Full Text PDFSmall GTPases regulate many key cellular processes and their role in human disease validates many proteins in this class as desirable targets for therapeutic intervention. Reliable recombinant production of GTPases, often in the active GTP loaded state, is a prerequisite for the prosecution of drug discovery efforts. The preparation of these active forms can be complex and often constricts the supply to the reagent intensive techniques used in structure base drug discovery.
View Article and Find Full Text PDFCellular senescence is a barrier to tumorigenesis in normal cells, and tumor cells undergo senescence responses to genotoxic stimuli, which is a potential target phenotype for cancer therapy. However, in this setting, mixed-mode responses are common with apoptosis the dominant effect. Hence, more selective senescence inducers are required.
View Article and Find Full Text PDFChk1 kinase is a critical component of the DNA damage response checkpoint especially in cancer cells and targeting Chk1 is a potential therapeutic opportunity for potentiating the anti-tumor activity of DNA damaging chemotherapy drugs. Fragment elaboration by structure guided design was utilized to identify and develop a novel series of Chk1 inhibitors culminating in the identification of V158411, a potent ATP-competitive inhibitor of the Chk1 and Chk2 kinases. V158411 abrogated gemcitabine and camptothecin induced cell cycle checkpoints, resulting in the expected modulation of cell cycle proteins and increased cell death in cancer cells.
View Article and Find Full Text PDFBackground: The myotonic dystrophy kinase-related CDC42-binding kinases MRCKα and MRCKβ regulate actin-myosin contractility and have been implicated in cancer metastasis. Along with the related ROCK1 and ROCK2 kinases, the MRCK proteins initiate signalling events that lead to contractile force generation which powers cancer cell motility and invasion. A potential strategy for cancer therapy is to reduce metastasis by blocking MRCK activity, either alone or in combination with ROCK inhibition.
View Article and Find Full Text PDFThe identification of high-quality hits during the early phases of drug discovery is essential if projects are to have a realistic chance of progressing into clinical development and delivering marketed drugs. As the pharmaceutical industry goes through unprecedented change, there are increasing opportunities to collaborate via pre-competitive networks to marshal multifunctional resources and knowledge to drive impactful, innovative science. The 3D Fragment Consortium is developing fragment-screening libraries with enhanced 3D characteristics and evaluating their effect on the quality of fragment-based hit identification (FBHI) projects.
View Article and Find Full Text PDFInhibitors of the Hsp90 molecular chaperone are showing promise as anti-cancer agents. Here we describe a series of 4-aryl-5-cyanopyrrolo[2,3-d]pyrimidine ATP competitive Hsp90 inhibitors that were identified following structure-driven optimization of purine hits revealed by NMR based screening of a proprietary fragment library. Ligand-Hsp90 X-ray structures combined with molecular modeling led to the rational displacement of a conserved water molecule leading to enhanced affinity for Hsp90 as measured by fluorescence polarization, isothermal titration calorimetry and surface plasmon resonance assays.
View Article and Find Full Text PDF78 kDa glucose-regulated protein (Grp78) is a heat shock protein (HSP) involved in protein folding that plays a role in cancer cell proliferation. Binding of adenosine-derived inhibitors to Grp78 was characterized by surface plasmon resonance and isothermal titration calorimetry. The most potent compounds were 13 (VER-155008) with K(D) = 80 nM and 14 with K(D) = 60 nM.
View Article and Find Full Text PDFHeat shock protein 90 (Hsp90) is a ubiquitously expressed molecular chaperone with ATPase activity involved in the conformational maturation and stability of key signaling molecules involved in cell proliferation, survival, and transformation. Through its ability to modulate multiple pathways involved in oncogenesis, Hsp90 has generated considerable interest as a therapeutic target. NVP-BEP800 is a novel, fully synthetic, orally bioavailable inhibitor that binds to the NH(2)-terminal ATP-binding pocket of Hsp90.
View Article and Find Full Text PDFPurpose: The anti-apoptotic function of the 70 kDa family of heat shock proteins and their role in cancer is well documented. Dual targeting of Hsc70 and Hsp70 with siRNA induces proteasome-dependent degradation of Hsp90 client proteins and extensive tumor specific apoptosis as well as the potentiation of tumor cell apoptosis following pharmacological Hsp90 inhibition.
Methods: We have previously described the discovery and synthesis of novel adenosine-derived inhibitors of the 70 kDa family of heat shock proteins; the first inhibitors described to target the ATPase binding domain.
Inhibitors of the Hsp90 molecular chaperone are showing considerable promise as potential molecular therapeutic agents for the treatment of cancer. Here we describe novel 2-aminothieno[2,3-d]pyrimidine ATP competitive Hsp90 inhibitors, which were designed by combining structural elements of distinct low affinity hits generated from fragment-based and in silico screening exercises in concert with structural information from X-ray protein crystallography. Examples from this series have high affinity (IC50 = 50-100 nM) for Hsp90 as measured in a fluorescence polarization (FP) competitive binding assay and are active in human cancer cell lines where they inhibit cell proliferation and exhibit a characteristic profile of depletion of oncogenic proteins and concomitant elevation of Hsp72.
View Article and Find Full Text PDFThe design and synthesis of novel adenosine-derived inhibitors of HSP70, guided by modeling and X-ray crystallographic structures of these compounds in complex with HSC70/BAG-1, is described. Examples exhibited submicromolar affinity for HSP70, were highly selective over HSP90, and some displayed potency against HCT116 cells. Exposure of compound 12 to HCT116 cells caused significant reduction in cellular levels of Raf-1 and Her2 at concentrations similar to that which caused cell growth arrest.
View Article and Find Full Text PDFHeat shock protein (Hsp90) inhibitors are an increasingly interesting and important class of compounds where the first in class, natural product derived inhibitors such as 17-allylaminogeldanamycin (17-AAG), are entering late stage clinical development. Recently the emergence of synthetic, small molecule inhibitors has been described and both NVP-AUY922 and BIIB021 have entered clinical development. The medicinal chemistry of these and other published small molecule Hsp90 inhibitors is described in this review.
View Article and Find Full Text PDFIntroduction: Heat shock protein 90 (HSP90) is a key component of a multichaperone complex involved in the post-translational folding of a large number of client proteins, many of which play essential roles in tumorigenesis. HSP90 has emerged in recent years as a promising new target for anticancer therapies.
Methods: The concentrations of the HSP90 inhibitor NVP-AUY922 required to reduce cell numbers by 50% (GI50 values) were established in a panel of breast cancer cell lines and patient-derived human breast tumors.
We describe the biological properties of NVP-AUY922, a novel resorcinylic isoxazole amide heat shock protein 90 (HSP90) inhibitor. NVP-AUY922 potently inhibits HSP90 (K(d) = 1.7 nmol/L) and proliferation of human tumor cells with GI(50) values of approximately 2 to 40 nmol/L, inducing G(1)-G(2) arrest and apoptosis.
View Article and Find Full Text PDFInhibitors of the Hsp90 molecular chaperone are showing considerable promise as potential chemotherapeutic agents for cancer. Here, we describe the structure-based design, synthesis, structure-activity relationships and pharmacokinetics of potent small-molecule inhibitors of Hsp90 based on the 4,5-diarylisoxazole scaffold. Analogues from this series have high affinity for Hsp90, as measured in a fluorescence polarization (FP) competitive binding assay, and are active in cancer cell lines where they inhibit proliferation and exhibit a characteristic profile of depletion of oncogenic proteins and concomitant elevation of Hsp72.
View Article and Find Full Text PDFFinding novel compounds as starting points for optimization is a major challenge in drug discovery research. Fragment-based methods have emerged in the past ten years as an effective way to sample chemical diversity with a limited number of low molecular weight compounds. The structures of the fragments(s) binding to the protein can then be used to design new compounds with increased affinity, specificity and novelty.
View Article and Find Full Text PDFVirtual screening against a pCDK2/cyclin A crystal structure led to the identification of a potent and novel CDK2 inhibitor, which exhibited an unusual mode of interaction with the kinase binding motif. With the aid of X-ray crystallography and modelling, a medicinal chemistry strategy was implemented to probe the interactions seen in the crystal structure and to establish SAR. A fragment-based approach was also considered but a different, more conventional, binding mode was observed.
View Article and Find Full Text PDFAlthough the heat shock protein 90 (HSP90) inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) shows clinical promise, potential limitations encourage development of alternative chemotypes. We discovered the 3,4-diarylpyrazole resorcinol CCT018159 by high-throughput screening and used structure-based design to generate more potent pyrazole amide analogues, exemplified by VER-49009. Here, we describe the detailed biological properties of VER-49009 and the corresponding isoxazole VER-50589.
View Article and Find Full Text PDFHeat shock protein (Hsp)90 is a molecular chaperone that is responsible for the correct folding of a large number of proteins, which allows these proteins to achieve their functional conformation. Client proteins of Hsp90 include many overexpressed or mutated oncogenes that are known to be critical for the transformed phenotype observed in tumors. The compounds 17-AAG (Kosan Biosciences Inc/National Cancer Institute) and 17-DMAG (Kosan Biosciences Inc/National Cancer Institute) are Hsp90 inhibitors that are derived from the prototypical ansamycin natural product Hsp90 inhibitor geldanamycin.
View Article and Find Full Text PDF