Publications by authors named "Martin Devenport"

Patients who undergo human leukocyte antigen-matched unrelated donor (MUD) allogeneic hematopoietic stem cell transplantation (HSCT) with myeloablative conditioning for hematologic malignancies often develop acute graft-versus-host disease (GVHD) despite standard calcineurin inhibitor-based prophylaxis in combination with methotrexate. This trial evaluated a novel human CD24 fusion protein (CD24Fc/MK-7110) that selectively targets and mitigates inflammation due to damage-associated molecular patterns underlying acute GVHD while preserving protective immunity after myeloablative conditioning. This phase 2a, multicenter study evaluated the pharmacokinetics, safety, and efficacy of CD24Fc in combination with tacrolimus and methotrexate in preventing acute GVHD in adults undergoing MUD HSCT for hematologic malignancies.

View Article and Find Full Text PDF

Immune checkpoint inhibitors (ICIs), such as nivolumab and ipilimumab, not only elicit antitumor responses in a wide range of human cancers but also cause severe immune-related adverse events (irAEs), including death. A largely unmet medical need is to treat irAEs without abrogating the immunotherapeutic effect of ICIs. Although abatacept has been used to treat irAEs, it risks neutralizing the anti-cytotoxic T lymphocyte-associated protein 4 (CTLA-4) monoclonal antibodies administered for cancer therapy, thereby reducing the efficacy of anti-CTLA-4 immunotherapy.

View Article and Find Full Text PDF

The molecular interactions that regulate chronic inflammation underlying metabolic disease remain largely unknown. Since the CD24-Siglec interaction regulates inflammatory response to danger-associated molecular patterns (DAMPs), we have generated multiple mouse strains with single or combined mutations of Cd24 or Siglec genes to explore the role of the CD24-Siglec interaction in metaflammation and metabolic disorder. Here, we report that the CD24-Siglec-E axis, but not other Siglecs, is a key suppressor of obesity-related metabolic dysfunction.

View Article and Find Full Text PDF

Major challenges such as nuclease degradation, rapid renal clearance, non-specific delivery, poor cellular uptake and inflammatory response have limited the clinical application of small RNA-mediated gene silencing. To overcome these challenges, we designed a novel targeting small RNA delivery platform comprising of three oligonucleotides: (1) a guide RNA sequence, (2) part of a passenger sequence linked to a DNA aptamer via a PEG linker, and (3) another passenger sequence conjugated to cholesterol, which assemble through complementary base pair annealing. Remarkably, in the presence of magnesium, this molecule self-assembled into a nanoparticle with a hydrophobic cholesterol core, hydrophilic RNA oligonucleotide shell and PEG-linked DNA aptamer flare.

View Article and Find Full Text PDF

Background: Non-antiviral therapeutic options are required for the treatment of hospitalised patients with COVID-19. CD24Fc is an immunomodulator with potential to reduce the exaggerated inflammatory response to tissue injuries. We aimed to evaluate the safety and efficacy of CD24Fc in hospitalised adults with COVID-19 receiving oxygen support.

View Article and Find Full Text PDF

A combination of anti-CTLA-4 plus anti-PD-1/PD-L1 is the most effective cancer immunotherapy but causes high incidence of immune-related adverse events (irAEs). Here we report that targeting of HIF-1α suppressed PD-L1 expression on tumor cells and tumor-infiltrating myeloid cells, but unexpectedly induced PD-L1 in normal tissues by an IFN-γ-dependent mechanism. Targeting the HIF-1α/PD-L1 axis in tumor cells reactivated tumor-infiltrating lymphocytes and caused tumor rejection.

View Article and Find Full Text PDF

Background: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) through direct lysis of infected lung epithelial cells, which releases damage-associated molecular patterns and induces a pro-inflammatory cytokine milieu causing systemic inflammation. Anti-viral and anti-inflammatory agents have shown limited therapeutic efficacy. Soluble CD24 (CD24Fc) blunts the broad inflammatory response induced by damage-associated molecular patterns via binding to extracellular high mobility group box 1 and heat shock proteins, as well as regulating the downstream Siglec10-Src homology 2 domain-containing phosphatase 1 pathway.

View Article and Find Full Text PDF

Background: SARS-CoV-2 causes COVID-19 through direct lysis of infected lung epithelial cells, which releases damage-associated molecular patterns (DAMPs) and induces a pro-inflammatory cytokine milieu causing systemic inflammation. Anti-viral and anti-inflammatory agents have shown limited therapeutic efficacy. Soluble CD24 (CD24Fc) is able to blunt the broad inflammatory response induced by DAMPs in multiple models.

View Article and Find Full Text PDF

Background: CTLA-4 was the first immune checkpoint targeted for cancer therapy and the first target validated by the FDA (Food and Drug Administration) after approval of the anti-CTLA-4 antibody, Ipilimumab. However, clinical response rates to anti-CTLA-4 antibodies are lower while the rates of immunotherapy-related adverse events (irAE) are higher than with anti-PD-1 antibodies. As a result, the effort to target CTLA-4 for cancer immunotherapy has stagnated.

View Article and Find Full Text PDF

It remains unclear why the clinically used anti-CTLA-4 antibodies, popularly called checkpoint inhibitors, have severe immunotherapy-related adverse effects (irAEs) and yet suboptimal cancer immunotherapeutic effects (CITE). Here we report that while irAE-prone Ipilimumab and TremeIgG1 rapidly direct cell surface CTLA-4 for lysosomal degradation, the non-irAE-prone antibodies we generated, HL12 or HL32, dissociate from CTLA-4 after endocytosis and allow CTLA-4 recycling to cell surface by the LRBA-dependent mechanism. Disrupting CTLA-4 recycling results in robust CTLA-4 downregulation by all anti-CTLA-4 antibodies and confers toxicity to a non-irAE-prone anti-CTLA-4 mAb.

View Article and Find Full Text PDF

Chronic immune activation and systemic inflammation are underlying causes of acquired immunodeficiency syndrome (AIDS). Products of virus replication and microbial translocation, co-infection or opportunistic pathogens, and danger-associated molecular patterns have been reported to contribute to chronic immune activation and inflammation in human immunodeficiency virus type-1/simian immunodeficiency virus (HIV-1/SIV) infection or other disease. To develop new strategies and therapies for HIV-1/AIDS, we tested if the CD24 and Fc fusion protein (CD24Fc), which interacts with danger-associated molecular patterns and sialic acid binding Ig-like lectin to attenuate inflammation, can protect Chinese rhesus macaques (ChRMs) with SIV infection.

View Article and Find Full Text PDF

It is assumed that anti-CTLA-4 antibodies cause tumor rejection by blocking negative signaling from B7-CTLA-4 interactions. Surprisingly, at concentrations considerably higher than plasma levels achieved by clinically effective dosing, the anti-CTLA-4 antibody Ipilimumab blocks neither B7 trans-endocytosis by CTLA-4 nor CTLA-4 binding to immobilized or cell-associated B7. Consequently, Ipilimumab does not increase B7 on dendritic cells (DCs) from either CTLA4 gene humanized (Ctla4 ) or human CD34 stem cell-reconstituted NSG™ mice.

View Article and Find Full Text PDF

Anti-CTLA-4 monoclonal antibodies (mAbs) confer a cancer immunotherapeutic effect (CITE) but cause severe immunotherapy-related adverse events (irAE). Targeting CTLA-4 has shown remarkable long-term benefit and thus remains a valuable tool for cancer immunotherapy if the irAE can be brought under control. An animal model, which recapitulates clinical irAE and CITE, would be valuable for developing safer CTLA-4-targeting reagents.

View Article and Find Full Text PDF

SM1 is a twelve-amino-acid peptide that binds tightly to the Anopheles salivary gland and inhibits its invasion by Plasmodium sporozoites. By use of UV-crosslinking experiments between the peptide and its salivary gland target protein, we have identified the Anopheles salivary protein, saglin, as the receptor for SM1. Furthermore, by use of an anti-SM1 antibody, we have determined that the peptide is a mimotope of the Plasmodium sporozoite Thrombospondin Related Anonymous Protein (TRAP).

View Article and Find Full Text PDF

The gene Aedes aegypti intestinal mucin 1 (AeIMUC1) encodes a putative peritrophic matrix (PM) protein that is expressed in the midgut of mosquito larvae and adults and is upregulated in response to exposure to heavy metals. The AeIMUC1 protein has a predicted secretory signal peptide and three putative chitin-binding domains (CBDs) with an intervening mucin-like domain. Immunofluorescence and immunoelectron microscopy experiments established that AeIMUC1 is a bona fide PM protein, and binding of the recombinant protein to chitin was demonstrated in vitro.

View Article and Find Full Text PDF

Immuno-screening of an adult Aedes aegypti midgut cDNA expression library with anti-peritrophic matrix antibodies identified cDNAs encoding a novel peritrophic matrix protein, termed Ae. aegypti Adult Peritrophin 50 (Ae-Aper50), and the epithelial cell-surface membrane protein, AEG12. Both genes are expressed exclusively in the midguts of adult female mosquitoes and their expression is strongly induced by blood feeding.

View Article and Find Full Text PDF

Malaria kills millions of people every year, and new control measures are urgently needed. The recent demonstration that (effector) genes can be introduced into the mosquito germ line to diminish their ability to transmit the malaria parasite offers new hope toward the fight of the disease (Ito, J., Ghosh, A.

View Article and Find Full Text PDF