Publications by authors named "Martin Deppe"

Purpose: This study describes the development and testing of an asymmetrical xenon-129 ( Xe) birdcage radiofrequency (RF) coil for Xe lung ventilation imaging at 1.5 Tesla, which allows proton ( H) system body coil transmit-receive functionality.

Methods: The Xe RF coil is a whole-body asymmetrical elliptical birdcage constructed without an outer RF shield to enable H imaging.

View Article and Find Full Text PDF

Purpose: This study compared changes in imaging and in pain relief between patients with intraosseous, as opposed to extraosseous bone metastases. Both groups were treated palliatively with magnetic resonance-guided high-intensity-focused ultrasound (MRgHIFU).

Materials And Methods: A total of 21 patients were treated prospectively with MRgHIFU at 3 centers.

View Article and Find Full Text PDF

Background: The clinical feasibility of using pseudo-computed tomography (pCT) images derived from magnetic resonance (MR) images for external bean radiation therapy (EBRT) planning for prostate cancer patients has been well demonstrated. This paper investigates the feasibility of applying an MR-derived, pCT planning approach to additional types of cancer in the pelvis.

Material And Methods: Fifteen patients (five prostate cancer patients, five rectal cancer patients, and five gynecological cancer patients) receiving EBRT at Turku University Hospital (Turku, Finland) were included in the study.

View Article and Find Full Text PDF

Multiple-breath washout hyperpolarized (3)He MRI was used to calculate regional parametric images of fractional ventilation (r) as the ratio of fresh gas entering a volume unit to the total end inspiratory volume of the unit. Using a single dose of inhaled hyperpolarized gas and a total acquisition time of under 1 min, gas washout was measured by dynamic acquisitions during successive breaths with a fixed delay. A two-dimensional (2D) imaging protocol was investigated in four healthy subjects in the supine position, and in a second protocol the capability of extending the washout imaging to a three-dimensional (3D) acquisition covering the whole lungs was tested.

View Article and Find Full Text PDF

Purpose: Lung pO2 mapping with (3)He MRI assumes that the sources of signal decay with time during a breath-hold are radiofrequency depolarization and oxygen-dependent T1 relaxation, but the method is sensitive to other sources of spatio-temporal signal change such as diffusion. The purpose of this work was to assess the use of (3)He pO2 mapping in patients with chronic obstructive pulmonary disease.

Methods: Ten patients with moderate to severe chronic obstructive pulmonary disease were scanned with a 3D single breath-hold pO2 mapping sequence.

View Article and Find Full Text PDF

In this study, the signal-to-noise ratio of hyperpolarized (129)Xe human lung magnetic resonance imaging was compared at 1.5 T and 3 T. Experiments were performed at both B(0) fields with quadrature double Helmholtz transmit-receive chest coils of the same geometry with the same subject loads.

View Article and Find Full Text PDF

Background: Collateral ventilation has been proposed as a mechanism of compensation of respiratory function in obstructive lung diseases but observations of it in vivo are limited. The assessment of collateral ventilation with an imaging technique might help to gain insight into lung physiology and assist the planning of new bronchoscopic techniques for treating emphysema.

Objective: To obtain images of delayed ventilation that might be related to collateral ventilation over the period of a single breath-hold in patients with chronic obstructive pulmonary disease (COPD).

View Article and Find Full Text PDF

Balanced steady-state free precession imaging sequences provide signal-to-noise ratio benefits for MRI of hyperpolarized nuclei. Hyperpolarized magnetization decays during the imaging sequence to thermal equilibrium, effectively necessitating imaging in a transient state characterized by nonconstant transverse magnetization and k-space filtering when using constant flip angles. This work presents an analytical method for calculation of variable flip angle schedules which maintain constant transverse magnetization in balanced steady-state free precession imaging of hyperpolarized nuclei.

View Article and Find Full Text PDF

In hyperpolarised (3)He lung MRI with constant flip angles, the transverse magnetisation decays with each RF excitation imposing a k-space filter on the acquired data. For radial data acquired in an angularly-sequential order, this filter causes streaking, angular shading and loss of spatial resolution in the images. The main aim of this work was to reduce the effects of the RF depletion k-space filter in radial acquisitions.

View Article and Find Full Text PDF

Parallel imaging presents a promising approach for MRI of hyperpolarized nuclei, as the penalty in signal-to-noise ratio typically encountered with (1)H MRI due to a reduction in acquisition time can be offset by an increase in flip angle. The signal-to-noise ratio of hyperpolarized MRI generally exhibits a strong dependence on flip angle, which makes a homogeneous B(1)(+) transmit field desirable. This paper presents a flexible 32-channel receive array for (3) He human lung imaging at 1.

View Article and Find Full Text PDF

Washout of inert gases is a measure of pulmonary function well-known in lung physiology. This work presents a method combining inert gas washout and spatially resolved imaging using hyperpolarized (3) He, thus providing complementary information on lung function and physiology. The nuclear magnetic resonance signal of intrapulmonary hyperpolarized (3) He is used to track the total amount of gas present within the lungs during multiple-breath washout via tidal breathing.

View Article and Find Full Text PDF

Transmit gain (B 1+) calibration is necessary for the adjustment of radiofrequency (RF) power levels to the desired flip angles. In proton MRI, this is generally an automated process before the actual scan without any user interaction. For other nuclei, it is usually time consuming and difficult, especially in the case of hyperpolarised MR.

View Article and Find Full Text PDF

The development of hybrid medical imaging scanners has allowed imaging with different detection modalities at the same time, providing different anatomical and functional information within the same physiological time course with the patient in the same position. Until now, the acquisition of proton MRI of lung anatomy and hyperpolarised gas MRI of lung function required separate breath-hold examinations, meaning that the images were not spatially registered or temporally synchronised. We demonstrate the spatially registered concurrent acquisition of lung images from two different nuclei in vivo.

View Article and Find Full Text PDF

In this work, the application of compressed sensing techniques to the acquisition and reconstruction of hyperpolarized (3)He lung MR images was investigated. The sparsity of (3)He lung images in the wavelet domain was investigated through simulations based on fully sampled Cartesian two-dimensional and three-dimensional (3)He lung ventilation images, and the k-spaces of 2D and 3D images were undersampled randomly and reconstructed by minimizing the L1 norm. The simulation results show that temporal resolution can be readily improved by a factor of 2 for two-dimensional and 4 to 5 for three-dimensional ventilation imaging with (3)He with the levels of signal to noise ratio (SNR) (approximately 19) typically obtained.

View Article and Find Full Text PDF

This work explores slice profile effects in 2D slice-selective gradient-echo MRI of hyperpolarized nuclei. Two different sequences were investigated: a Spoiled Gradient Echo sequence with variable flip angle (SPGR-VFA) and a balanced Steady-State Free Precession (SSFP) sequence. It is shown that in SPGR-VFA the distribution of flip angles across the slice present in any realistically shaped radiofrequency (RF) pulse leads to large excess signal from the slice edges in later RF views, which results in an undesired non-constant total transverse magnetization, potentially exceeding the initial value by almost 300% for the last RF pulse.

View Article and Find Full Text PDF

Purpose: To compare susceptibility effects in hyperpolarized (3)He lung MRI at the clinically relevant field strengths of 1.5T and 3T.

Materials And Methods: Susceptibility-related B(0) inhomogeneity was evaluated on a macroscopic scale by B(0) field mapping via phase difference.

View Article and Find Full Text PDF