Publications by authors named "Martin Daufresne"

In ectotherms, the performance of physiological, ecological and life-history traits universally increases with temperature to a maximum before decreasing again. Identifying the most appropriate thermal performance model for a specific trait type has broad applications, from metabolic modelling at the cellular level to forecasting the effects of climate change on population, ecosystem and disease transmission dynamics. To date, numerous mathematical models have been designed, but a thorough comparison among them is lacking.

View Article and Find Full Text PDF

Aim: Thermal sensitivity of cellular metabolism is crucial for animal physiology and survival under climate change. Despite recent efforts, effects of multigenerational exposure to temperature on the metabolic functioning remain poorly understood. We aimed at determining whether multigenerational exposure to temperature modulate the mitochondrial respiratory response of Medaka fish.

View Article and Find Full Text PDF

Body size shifts in ectotherms are mostly attributed to the Temperature Size Rule (TSR) stating that warming speeds up initial growth rate but leads to smaller size when food does not limit growth. Investigating the links between temperature, growth, and life history traits is key to understand the adaptive value of TSR, which might be context dependent. In particular, global warming can affect food quantity or quality which is another major driver of growth, fecundity, and survival.

View Article and Find Full Text PDF

While many efforts have been devoted to understand variations in food web structure among terrestrial and aquatic ecosystems, the environmental factors influencing food web structure at large spatial scales remain hardly explored. Here, we compiled biodiversity inventories to infer food web structure of 67 French lakes using an allometric niche-based model and tested how environmental variables (temperature, productivity, and habitat) influence them. By applying a multivariate analysis on 20 metrics of food web topology, we found that food web structural variations are represented by two distinct complementary and independent structural descriptors.

View Article and Find Full Text PDF

The end of the 20th century was characterised by rapid modifications of ecosystem functioning under different pressures (such as eutrophication and toxic pollution). Increasing temperatures in the context of global warming could have indirect consequences, such as increased bioavailability of hydrophobic organic pollutants amongst aquatic species. According to the "pace-of-life syndrome" (POLS) theory, these stressors could lead to covariations in many life traits.

View Article and Find Full Text PDF

Lentic ecosystems play a major role in the global carbon cycling but the understanding of the environmental determinants of lake metabolism is still limited, notably in small artificial lakes. Here the effects of environmental conditions on lake metabolism and CO and CH emissions were quantified in 11 small artificial gravel pit lakes covering a gradient of ecosystem maturity, ranging from young oligotrophic to older, hypereutrophic lakes. The diffusive fluxes of CO and CH ranged from -30.

View Article and Find Full Text PDF

Temperature is an important ecological driver modulating life history traits of organisms, such as growth and reproduction. With the ongoing global warming, understanding the mechanisms underlying the effect of temperature on size and resource allocation trade-off is crucial. The temperature-size rule (TSR) describes plastic growth patterns in populations of ectothermic species under different thermal environments, whereby warming results in faster initial growth but lower size at maturity.

View Article and Find Full Text PDF

The Water Framework Directive (WFD) is now well established as the key management imperative in river basins across Europe. However, there remain significant concerns with the way WFD is implemented and there is now a need for water managers and scientists to communicate better in order to find solutions to these concerns. To address this, a Science-Policy Interface (SPI) activity was launched in 2010 led by Directorate-General for Research and Innovation and Onema (the French national agency for water and aquatic ecosystems), which provided an interactive forum to connect scientists and WFD end-users.

View Article and Find Full Text PDF

Biodiversity has reached a critical state. In this context, stakeholders need indicators that both provide a synthetic view of the state of biodiversity and can be used as communication tools. Using river fishes as model, we developed community indicators that aim at integrating various components of biodiversity including interactions between species and ultimately the processes influencing ecosystem functions.

View Article and Find Full Text PDF

A family of empirically based ecological 'rules', collectively known as temperature-size rules, predicts larger body size in colder environments. This prediction is based on studies demonstrating that a wide range of ectotherms show increased body size, cell size or genome size in low-temperature habitats, or that individuals raised at low temperature become larger than conspecifics raised at higher temperature. There is thus a potential for reduction in size with global warming, affecting all levels from cell volume to body size, community composition and food webs.

View Article and Find Full Text PDF

Understanding the ecological impacts of climate change is a crucial challenge of the twenty-first century. There is a clear lack of general rules regarding the impacts of global warming on biota. Here, we present a metaanalysis of the effect of climate change on body size of ectothermic aquatic organisms (bacteria, phyto- and zooplankton, and fish) from the community to the individual level.

View Article and Find Full Text PDF

We assessed the temporal changes in and the relationships between the structures of the macroinvertebrate communities and the environmental conditions of the French Rhône River (the river from Lake Geneva to the Mediterranean Sea) over the last 20 years (1985-2004). Multisite environmental and biological datasets were analysed using multiple CO-inertia analysis (MCOA) and Procrustean analysis. Changes in environmental conditions were mainly marked by an improvement in water quality between 1985 and 1991 and by an increase in water temperature from 1985 onwards due to climate change.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionhg1sprsip88lfhu7m4r8e00evo4sa3i7): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once