GADD34, a stress-induced regulatory subunit of the phosphatase PP1, is known to function in hyperosmotic stress through its well-known role in the integrated stress response (ISR) pathway. Adaptation to hyperosmotic stress is important for the health of corneal epithelial cells exposed to changes in extracellular osmolarity, with maladaptation leading to dry eye syndrome. This adaptation includes induction of SNAT2, an endoplasmic reticulum (ER)-Golgi-processed protein, which helps to reverse the stress-induced loss of cell volume and promote homeostasis through amino acid uptake.
View Article and Find Full Text PDFCells respond to shrinkage induced by increased extracellular osmolarity via programmed changes in gene transcription and mRNA translation. The immediate response to this stress includes the induction of expression of the neutral amino acid transporter SNAT2. Increased SNAT2-mediated uptake of neutral amino acids is an essential adaptive mechanism for restoring cell volume.
View Article and Find Full Text PDFPERK, PKR, HRI and GCN2 are the four mammalian kinases that phosphorylate the α subunit of the eukaryotic translation initiation factor 2 (eIF2α) on Ser51. This phosphorylation event is conserved among many species and attenuates protein synthesis in response to diverse stress conditions. In contrast, Saccharmyces cerevisiae expresses only the GCN2 kinase.
View Article and Find Full Text PDFResponding to nutrient availability is an important homeostatic mechanism in the growth, development, and function of cells and tissues. However, these adaptations can also play a role in the development of disease. Our symposium, “Cellular Responses to Nutrients and Development of Disease," presented research about how cells sense nutrients and how the resulting signal transduction controls cellular processes from gene transcription to impacting various pathophysiologic processes.
View Article and Find Full Text PDFEndoplasmic reticulum (ER) stress-induced responses are associated with the loss of insulin-producing β-cells in type 2 diabetes mellitus. β-Cell survival during ER stress is believed to depend on decreased protein synthesis rates that are mediated via phosphorylation of the translation initiation factor eIF2α. It is reported here that chronic ER stress correlated with increased islet protein synthesis and apoptosis in β-cells in vivo.
View Article and Find Full Text PDFThe accumulation of unfolded proteins in the endoplasmic reticulum (ER) triggers transcriptional and translational reprogramming. This unfolded protein response (UPR) protects cells during transient stress and can lead to apoptosis during prolonged stress. Two key mediators of the UPR are PKR-like ER kinase (PERK), which phosphorylates the α subunit of eukaryotic translation initiation factor 2 (eIF2α), resulting in decreased protein synthesis, and the α subunit of inositol-requiring enzyme 1 (IRE1α), which initiates cytoplasmic splicing of the mRNA encoding the transcription factor X-box binding protein 1 (XBP1).
View Article and Find Full Text PDFExpression of the Cat-1 gene (cationic amino acid transporter-1) is induced in proliferating cells and in response to a variety of stress conditions. The expression of the gene is mediated via a TATA-less promoter. In the present study we show that an Sp1 (specificity protein 1)-binding site within a GC-rich region of the Cat-1 gene controls its basal expression and is important for induction of the gene during the UPR (unfolded protein response).
View Article and Find Full Text PDFRegulation of cell volume is of great importance because persistent swelling or shrinkage leads to cell death. Tissues experience hypertonicity in both physiological (kidney medullar cells) and pathological states (hypernatremia). Hypertonicity induces an adaptive gene expression program that leads to cell volume recovery or apoptosis under persistent stress.
View Article and Find Full Text PDFExpression of the arginine/lysine transporter Cat-1 is highly induced in proliferating and stressed cells via mechanisms that include transcriptional activation. A bifunctional INE (intronic element) within the first intron of the Cat-1 gene was identified and characterized in this study. The INE had high sequence homology to an amino acid response element and was shown to act as a transcriptional enhancer in unstressed cells by binding the transcription factor, purine-rich element binding protein A (Pur alpha).
View Article and Find Full Text PDFThe response to amino acid starvation involves the global decrease of protein synthesis and an increase in the translation of some mRNAs that contain an internal ribosome entry site (IRES). It was previously shown that translation of the mRNA for the arginine/lysine amino acid transporter Cat-1 increases during amino acid starvation via a mechanism that utilizes an IRES in the 5' untranslated region of the Cat-1 mRNA. It is shown here that polypyrimidine tract binding protein (PTB) and an hnRNA binding protein, heterogeneous nuclear ribonucleoprotein L (hnRNP L), promote the efficient translation of Cat-1 mRNA during amino acid starvation.
View Article and Find Full Text PDFThe accumulation of unfolded proteins in the endoplasmic reticulum (ER) triggers a stress response program that protects cells early in the response and can lead to apoptosis during prolonged stress. The basic leucine zipper transcription factor, CCAAT/enhancer-binding protein beta (C/EBPbeta), is one of the genes with increased expression during ER stress. Translation of the C/EBPbeta mRNA from different initiation codons leads to the synthesis of two transcriptional activators (LAP-1 and -2) and a transcriptional repressor (LIP).
View Article and Find Full Text PDFIn vitro translation systems are used to investigate translational mechanisms and to synthesize proteins for characterization. Most available mammalian cell-free systems have reduced efficiency due to decreased translation initiation caused by phosphorylation of the initiation factor eIF2alpha on Ser51. We describe here a novel cell-free protein synthesis system using extracts from cultured mouse embryonic fibroblasts that are homozygous for the Ser51 to- Ala mutation in eIF2alpha (A/A cells).
View Article and Find Full Text PDFThis unit describes methods for preparation of glycoproteins metabolically labeled with radioactive sugars, sulfate, and phosphate. Methods for liberation of both N- and O-linked glycans are also described. These protocols can be used to generate materials for characterization of glycoprotein glycans from cultured cells.
View Article and Find Full Text PDFThe adaptive response to amino acid limitation in mammalian cells inhibits global protein synthesis and promotes the expression of proteins that protect cells from stress. The arginine/lysine transporter, cat-1, is induced during amino acid starvation by transcriptional and post-transcriptional mechanisms. It is shown in the present study that the transient induction of cat-1 transcription is regulated by the stress response pathway that involves phosphorylation of the translation initiation factor, eIF2 (eukaryotic initiation factor-2).
View Article and Find Full Text PDFJ Biol Chem
June 2006
Nutritional stress caused by amino acid starvation involves a coordinated cellular response that includes the global decrease of protein synthesis and the increased production of cell defense proteins. Part of this response is the induction of transport system A for neutral amino acids that leads to the recovery of cell volume and amino acid levels once extracellular amino acid availability is restored. Hypertonic stress also increases system A activity as a mechanism to promote a rapid recovery of cell volume.
View Article and Find Full Text PDFIt was previously shown that the mRNA for the cat-1 Arg/Lys transporter is translated from an internal ribosome entry site (IRES) that is regulated by cellular stress. Amino acid starvation stimulated cat-1 translation via a mechanism that requires translation of an ORF in the mRNA leader and remodeling of the leader to form an active IRES (the "zipper model" of translational control). It is shown here that slowing of the leader peptide elongation rate, either by cycloheximide or the introduction of rare codons, stimulated translation of the downstream ORF.
View Article and Find Full Text PDFWhen growth factors are removed from many mammalian cells, growth ceases and apoptosis is induced. The small GTPase rab7, which regulates endocytic membrane traffic, participates in this process by mediating the regulated internalization and degradation of nutrient transporters. This process triggers nutrient starvation that helps to induce cell death.
View Article and Find Full Text PDFCells respond to physiological stress by phosphorylating the alpha subunit of the translation initiation factor eIF2. This adaptive response inhibits protein synthesis and up-regulates genes essential for cell survival. Cat-1, the transporter for the essential amino acids, arginine and lysine, is one of the up-regulated genes.
View Article and Find Full Text PDFTransport of the essential amino acids arginine and lysine is critical for the survival of mammalian cells. The adaptive response to nutritional stress involves increased translation of the arginine/lysine transporter (cat-1) mRNA via an internal ribosome entry site (IRES) within the mRNA leader. Induction of cat-1 IRES activity requires both translation of a small upstream open reading frame (uORF) within the IRES and phosphorylation of the translation initiation factor eIF2alpha.
View Article and Find Full Text PDFThe cationic amino acid transporter, Cat-1, is a high affinity transporter of the essential amino acids, arginine and lysine. Expression of the cat-1 gene increases during nutritional stress as part of the adaptive response to starvation. Amino acid limitation induces coordinate increases in stability and translation of the cat-1 mRNA, at a time when global protein synthesis decreases.
View Article and Find Full Text PDFInitiation of translation from most cellular mRNAs occurs via scanning; the 40 S ribosomal subunit binds to the m(7)G-cap and then moves along the mRNA until an initiation codon is encountered. Some cellular mRNAs contain internal ribosome entry sequences (IRESs) within their 5'-untranslated regions, which allow initiation independently of the 5'-cap. This study investigated the ability of cellular stress to regulate the activity of IRESs in cellular mRNAs.
View Article and Find Full Text PDFThe cationic amino acid transporter, Cat-1, is a high affinity transporter of the essential amino acids, arginine and lysine. Expression of the cat-1 gene is known to be regulated by amino acid availability. It is shown here that cat-1 gene expression is also induced by Glc limitation, which causes a 7-fold increase in cat-1 mRNA, a 30-fold induction of Cat-1 protein levels, and a 4-fold stimulation of arginine uptake.
View Article and Find Full Text PDF