J Colloid Interface Sci
February 2025
The construction of ultrathin membranes from linearly aligned π-electron systems is advantageous for targeted energy, charge, or mass transfer. The Langmuir-Blodgett (LB) technique enables the creation of such membranes, especially with amphiphilic π-electron systems. However, these systems often aggregate, forming rigid Langmuir monolayers with defects or holes.
View Article and Find Full Text PDFPolymer-based batteries represent a promising candidate for next-generation batteries due to their high power densities, decent cyclability, and environmentally friendly synthesis. However, their performance essentially depends on the complex multiscale morphology of their electrodes, which can significantly affect the transport of ions and electrons within the electrode structure. In this paper, we present a comprehensive investigation of the complex relationship between the three-dimensional (3D) morphology of polymer-based battery electrodes and their effective transport properties.
View Article and Find Full Text PDFApplication of redox-active polymers (RAPs) in redox flow batteries (RFBs) can potentially reduce the stack cost through substitution of costly ion-exchange membranes by cheap size-exclusion membranes. However, intermolecular interactions of polymer molecules, , entanglements, particularly in concentrated solutions, result in relatively high electrolyte viscosities. Furthermore, the large size and limited mobility of polymers lead to slow diffusion and more sluggish heterogeneous electron transfer rates compared to quickly diffusing small molecules.
View Article and Find Full Text PDFPaper used for packaging applications is often coated with thin polymer coatings to improve the properties, like printability and barrier properties, respectively. Today, these coatings are still often based on petroleum-based polymers. In this study, the fabrication of biobased thin film coatings is described.
View Article and Find Full Text PDFinline-nuclear magnetic resonance measurements, the homogeneously catalyzed poly(oxymethylene dimethyl ether) fuel synthesis using trioxane and dimethoxy methane is investigated. Besides the Brønsted acid (BA) catalyst triflic acid (TfOH) different metal halides are studied as Lewis-acidic (LA) catalysts. Among the used LAs, MgCl, the weakest based on electronegativity, reveals the highest catalytical activity.
View Article and Find Full Text PDFBenzo[d]-X-zolyl-pyridinyl (XO, S, NH) radicals represent a promising class of redox-active molecules for organic batteries. We present a multistep screening procedure to identify the most promising radical candidates. Experimental investigations and highly correlated wave function-based calculations are performed to determine benchmark redox potentials.
View Article and Find Full Text PDFSustainability is one of the hot topics of today's research, in particular when it comes to energy-storage systems such as batteries. Redox-active molecules implemented in organic batteries represent a promising alternative to lithium-ion batteries, which partially rely on non-sustainable heavy metal salts. As an alternative, we propose benzothiazole, -oxazole and -imidazole derivatives as redox-active moieties for polymers in organic (radical) batteries.
View Article and Find Full Text PDFPolymeric single chloride-ion conductor networks based on acrylic imidazolium chloride ionic liquid monomers AACXImCYCl as reported previously are prepared. The chemical structure of the polymers is varied with respect to the acrylic substituents (alkyl spacer and alkyl substituent in the imidazolium ring). The networks are examined in detail with respect to the influence of the chemical structure on the resulting properties including thermal behavior, rheological behavior, swelling behavior, and ionic conductivity.
View Article and Find Full Text PDFStimuli-responsive polymers can switch specific physical properties in response to a change of the environmental conditions. This behavior offers unique advantages in applications where adaptive materials are needed. To tune the properties of stimuli-responsive polymers, a detailed understanding of the relationship between the applied stimulus and changes in molecular structure as well as the relationship between the latter and macroscopic properties is required, which until now has required laborious methods.
View Article and Find Full Text PDFThe hydrophilic poly(2,2,6,6-tetramethylpiperdinyloxy-4-yl-methacrylamide) (PTMAm) was utilized as redox target material in an aqueous organic redox targeting flow battery (RTFB). This polymer is processed into granules, which contain a conductive agent and an alginate binder. By this, a hydrophilic, yet water-insoluble redox target can be obtained.
View Article and Find Full Text PDFOnline NMR measurements are introduced in the current study as a new analytical setup for investigation of the oxymethylene dimethyl ether (OME) synthesis. For the validation of the setup, the newly established method is compared with state-of-the-art gas chromatographic analysis. Afterwards, the influence of different parameters, such as temperature, catalyst concentration and catalyst type on the OME fuel formation based on trioxane and dimethoxymethane is investigated.
View Article and Find Full Text PDFCrosslinked hydrophilic poly(2,2,6,6-tetramethylpiperidinyl-N-oxyl-co-[2-(methacryloyloxy)-ethyl]trimethyl ammonium chloride) [poly(TEMPO-co-METAC)] polymers with different monomer ratios are synthesized and characterized regarding a utilization as electrode material in organic batteries. These polymers can be synthesized rapidly utilizing commercial starting materials and reveal an increased hydrophilicity compared to the state-of-the-art poly(2,2,6,6-tetramethylpiperidinyl-N-oxyl-4-methacrylate) (PTMA). By increasing the hydrophilicity of the polymer, a preparation of cathode composites is enabled, which can be used for aqueous semi-organic batteries.
View Article and Find Full Text PDFThis study presents the synthesis and characterization of metallopolymer networks with a triple shape-memory ability. A covalently crosslinked polymer network featuring two different additional ligands in its side chains is synthesized via free radical polymerization (FRP). The subsequent addition of different metal salts leads to the selective formation of complexes with two different association constants (), proven via isothermal titration calorimetry (ITC).
View Article and Find Full Text PDFA new sulfamidic acid anthraquinone derivative was synthesized from 2,6-diaminoanthraquinone with high yields, designed for utilization in redox flow batteries. The active material was investigated with cyclic voltammetry, revealing a reversible redox reaction at approximately -0.65 V Ag/AgCl at pH-values above 12.
View Article and Find Full Text PDFAqueous-organic redox flow batteries (RFBs) have gained considerable interest in recent years, given their potential for an economically viable energy storage at large scale. This, however, strongly depends on both the robustness of the underlying electrolyte chemistry against molecular decomposition reactions as well as the device's operation. With regard to this, the presented study focuses on the use of in situ IR spectroscopy in combination with a multivariate curve resolution approach to gain insight into both the molecular structures of the active materials present within the electrolyte as well as crucial electrolyte state parameters, represented by the electrolyte's state of charge (SOC) and state of health (SOH).
View Article and Find Full Text PDFThe volumetric capacities and the lifetime of organic redox flow batteries (RFBs) are strongly dependent on the concentrations of the redox-active molecules in the electrolyte. Single-molecule redox targeting represents an efficient approach toward realizing viable organic RFBs with low to moderate electrolyte concentrations. For the first time, an all-organic Nernstian potential-driven redox targeting system is investigated that directly combines a single-electrode material from organic radical batteries (ORBs) with a single redox couple of an aqueous, organic RFB, which are based on the same redox moiety.
View Article and Find Full Text PDFFlow batteries (FBs) currently are one of the most promising large-scale energy storage technologies for energy grids with a large share of renewable electricity generation. Among the main technological challenges for the economic operation of a large-scale battery technology is its calendar lifetime, which ideally has to cover a few decades without significant loss of performance. This requirement can only be met if the key parameters representing the performance losses of the system are continuously monitored and optimized during the operation.
View Article and Find Full Text PDFBeilstein J Org Chem
September 2021
The self-healing behavior of two supramolecular polymers based on π-π-interactions featuring different polymer backbones is presented. For this purpose, these polymers were synthesized utilizing a polycondensation of a perylene tetracarboxylic dianhydride with polyether-based diamines and the resulting materials were investigated using various analytical techniques. Thus, the molecular structure of the polymers could be correlated with the ability for self-healing.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2021
We report a novel hole conductive polymer with photoactive Os(ii) complexes in the side chains. This PPV derivative can be activated upon absorption of red visible light and delivers notable photocurrents when used as photocathode material. Thus, the polymer presents as a stepping stone towards developing soft matter alternatives to NiO photocathodes, which function under visible light irradiation.
View Article and Find Full Text PDFThe halogen bond is a special non-covalent interaction, which can represent a powerful tool in supramolecular chemistry. Although the halogen bond offers several advantages compared to the related hydrogen bond, it is currently still underrepresented in polymer science. The structural related hydrogen bonding assumes a leading position in polymer materials containing supramolecular interactions, clearly indicating the high potential of using halogen bonding for the design of polymeric materials.
View Article and Find Full Text PDFOwing to their broad range of redox potential, quinones/hydroquinones can be utilized for energy storage in redox flow batteries. In terms of stability, organic catholytes are more challenging than anolytes. The two-electron transfer feature adds value when building all-quinone flow battery systems.
View Article and Find Full Text PDFFlexible cross-linked anion exchange membranes (AEMs) based on poly (-phenylene oxide) grafted with -spirocyclic quaternary ammonium cations were synthesized via UV-induced free-radical polymerization by using diallylpiperidinium chloride as an ionic monomer. Five membranes with ion exchange capacity (IEC) varying between 1.5 to 2.
View Article and Find Full Text PDFA conductive polymer (poly(p-phenylenevinylene), PPV) was covalently modified with Ru complexes to develop an all-polymer photocathode as a conceptual alternative to dye-sensitized NiO, which is the current state-of-the-art photocathode in solar fuels research. Photocathodes require efficient light-induced charge-transfer processes and we investigated these processes within our photocathodes using spectroscopic and spectro-electrochemical techniques. Ultrafast hole-injection dynamics in the polymer were investigated by transient absorption spectroscopy and charge transfer at the electrode-electrolyte interface was examined with chopped-light chronoamperometry.
View Article and Find Full Text PDFA new monomer, 2-ferrocene-ethyl-2-oxazoline, was copolymerized with 2-alkyl-2-oxazolines. The cationic ring opening polymerization (CROP) of 2-oxazolines allows the synthesis of well-defined copolymers with adjustable molar masses as well as end-group control, which was also evident from kinetic studies. The utilization of this new comonomer led to redox-active polymers as proven by UV-VIS-measurements and cyclic-voltammetry.
View Article and Find Full Text PDF