Coating thermal noise is one of the dominant noise sources in current gravitational wave detectors and ultimately limits their ability to observe weaker or more distant astronomical sources. This Letter presents investigations of TiO_{2} mixed with SiO_{2} (TiO_{2}:SiO_{2}) as a coating material. We find that, after heat treatment for 100 h at 850 °C, thermal noise of a highly reflective coating comprising of TiO_{2}:SiO_{2} and SiO_{2} reduces to 76% of the current levels in the Advanced LIGO and Advanced Virgo detectors-with potential for reaching 45%, if we assume the mechanical loss of state-of-the-art SiO_{2} layers.
View Article and Find Full Text PDFGlasses are nonequilibrium solids with properties highly dependent on their method of preparation. In vapor-deposited molecular glasses, structural organization could be readily tuned with deposition rate and substrate temperature. Here, we show that the atomic arrangement of strong network-forming GeO glass is modified at medium range (<2 nm) through vapor deposition at elevated temperatures.
View Article and Find Full Text PDFThe sensitivity of current and planned gravitational wave interferometric detectors is limited, in the most critical frequency region around 100 Hz, by a combination of quantum noise and thermal noise. The latter is dominated by Brownian noise: thermal motion originating from the elastic energy dissipation in the dielectric coatings used in the interferometer mirrors. The energy dissipation is a material property characterized by the mechanical loss angle.
View Article and Find Full Text PDFBackground: Allergic rhinitis (AR) is the most common atopic disease with strong links to asthma. We have developed a murine model of AR to study nasal, bronchial, and systemic immune response to local allergen stimulation.
Objectives: The purpose of this study was to develop and characterize a murine model of AR.