Nucleosome assembly proteins (NAPs) have been identified as histone chaperons. Testis-Specific Protein, Y-Encoded-Like (TSPYL) is a newly arisen NAP family in mammals. TSPYL2 can be transcriptionally induced by DNA damage and TGFβ causing proliferation arrest.
View Article and Find Full Text PDFNeural progenitor cells (NPCs) derived from human pluripotent stem cells(hPSCs) provide major cell sources for repairing damaged neural circuitry and enabling axonal regeneration after spinal cord injury (SCI). However, the injury niche and inadequate intrinsic factors in the adult spinal cord restrict the therapeutic potential of transplanted NPCs. The Sonic Hedgehog protein (Shh) has crucial roles in neurodevelopment by promoting the formation of motorneurons and oligodendrocytes as well as its recently described neuroprotective features in response to the injury, indicating its essential role in neural homeostasis and tissue repair.
View Article and Find Full Text PDFApoptosis occurs during development when a separation of tissues is needed. Synovial joint formation is initiated at the presumptive site (interzone) within a cartilage anlagen, with changes in cellular differentiation leading to cavitation and tissue separation. Apoptosis has been detected in phalangeal joints during development, but its role and regulation have not been defined.
View Article and Find Full Text PDFObjective: Neuropathic pain poses a persistent challenge in clinical management. Neuromodulation has emerged as a last-resort therapy. Conventional spinal cord stimulation (Con SCS) often causes abnormal sensations and provides short analgesia, whereas high-frequency spinal cord stimulation (HF SCS) is a newer therapy that effectively alleviates pain without paresthesia.
View Article and Find Full Text PDFAdv Sci (Weinh)
July 2023
Neural stem cells (NSCs) derived from human pluripotent stem cells (hPSCs) are considered a major cell source for reconstructing damaged neural circuitry and enabling axonal regeneration. However, the microenvironment at the site of spinal cord injury (SCI) and inadequate intrinsic factors limit the therapeutic potential of transplanted NSCs. Here, it is shown that half dose of SOX9 in hPSCs-derived NSCs (hNSCs) results in robust neuronal differentiation bias toward motor neuron lineage.
View Article and Find Full Text PDFHaploinsufficiency for SOX9, the master chondrogenesis transcription factor, can underlie campomelic dysplasia (CD), an autosomal dominant skeletal malformation syndrome, because heterozygous null mice recapitulate the bent limb (campomelia) and some other phenotypes associated with CD. However, in vitro cell assays suggest haploinsufficiency may not apply for certain mutations, notably those that truncate the protein, but in these cases in vivo evidence is lacking and underlying mechanisms are unknown. Here, using conditional mouse mutants, we compared the impact of a heterozygous null mutation () with the CD mutation that truncates the C-terminal transactivation domain but spares the DNA-binding domain.
View Article and Find Full Text PDFIn this report, we applied annular bright-field and annular dark-field low-energy (30 keV) scanning transmission electron microscopy imaging to a vitreous ice-embedded biological macromolecule, T4 phage, to investigate the applicability of these methods for morphological investigation and sample screening. Multiple camera lengths were examined to find the optimal acceptance angle for both modes. Image clarity differed substantially between the modes, with the presence of ice also strongly influencing the quality of acquired micrographs.
View Article and Find Full Text PDFThe ability of melanoma to acquire metastasis through the induction of angiogenesis is one of the major causes of skin cancer death. Here, it is found that high transcript levels of DEP domain containing 1B (DEPDC1B) in cutaneous melanomas are significantly associated with a poor prognosis. Tissue microarray analysis indicates that DEPDC1B expression is positively correlated with SOX10 in the different stages of melanoma.
View Article and Find Full Text PDFAstrocytes, a major glial cell type in the brain, play a critical role in supporting the progression of medulloblastoma (MB), the most common malignant pediatric brain tumor. Through lineage tracing analyses and single-cell RNA sequencing, we demonstrate that astrocytes are predominantly derived from the transdifferentiation of tumor cells in relapsed MB (but not in primary MB), although MB cells are generally believed to be neuronal-lineage committed. Such transdifferentiation of MB cells relies on Sox9, a transcription factor critical for gliogenesis.
View Article and Find Full Text PDFNeurological diseases are mainly modeled using rodents through gene editing, surgery or injury approaches. However, differences between humans and rodents in terms of genetics, neural development, and physiology pose limitations on studying disease pathogenesis in rodent models for neuroscience research. In the past decade, the generation of induced pluripotent stem cells (iPSCs) and induced neural stem cells (iNSCs) by reprogramming somatic cells offers a powerful alternative for modeling neurological diseases and for testing regenerative medicines.
View Article and Find Full Text PDFBackground Patients with cardiometabolic disease, specifically, stroke, heart disease and diabetes have a high prevalence of polypharmacy. Interventions to better manage or reduce polypharmacy in these populations may help improve patient outcomes. However, there is a paucity of data in this area, which needs to be investigated.
View Article and Find Full Text PDFA Rho GTPase-activating protein (RhoGAP), deleted in liver cancer 1 (DLC1), is known to function as a tumor suppressor in various cancer types; however, whether DLC1 is a tumor-suppressor gene or an oncogene in melanoma remains to be clarified. Here we revealed that high DLC1 expression was detected in most of the melanoma tissues where it was localized in both the nuclei and the cytoplasm. Functional studies unveiled that DLC1 was both required and sufficient for melanoma growth and metastasis.
View Article and Find Full Text PDFThe transcription factor Sox10 is a key regulator in the fate determination of a subpopulation of multipotent trunk neural crest (NC) progenitors toward glial cells instead of sensory neurons in the dorsal root ganglia (DRG). However, the mechanism by which Sox10 regulates glial cell fate commitment during lineage segregation remains poorly understood. In our study, we showed that the neurogenic determinant Neurogenin 2 (Neurog2) exhibited transient overlapping expression with Sox10 in avian trunk NC progenitors, which progressively underwent lineage segregation during migration toward the forming DRG.
View Article and Find Full Text PDFCryo-electron microscopy (cryo-EM) has become the method of choice in the field of structural biology, owing to its unique ability to deduce structures of vitreous ice-embedded, hydrated biomolecules over a wide range of structural resolutions. As cryo-transmission electron microscopes (cryo-TEM) become increasingly specialised for high, near-atomic resolution studies, operational complexity and associated costs serve as significant barriers to widespread usability and adoptability. To facilitate the expansion and accessibility of the cryo-EM method, an efficient, user-friendly means of imaging vitreous ice-embedded biomolecules has been called for.
View Article and Find Full Text PDFCurr Opin Genet Dev
August 2019
The emergence of multipotent and migratory neural crest (NC) cells defines a key evolutionary transition from invertebrates to vertebrates. Studies in vertebrates have identified a complex gene regulatory network that governs sequential stages of NC ontogeny. Comparative analysis has revealed extensive conservation of the overall architecture of the NC gene regulatory network between jawless and jawed vertebrates.
View Article and Find Full Text PDFBackground: Six1 is a transcriptional factor that plays an important role in embryonic development. Mouse and chick embryos deficient for Six1 have multiple craniofacial anomalies in the facial bones and cartilages. Multiple Six1 enhancers have been identified, but none of them has been reported to be active in the maxillary and mandibular process.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2019
Background: In this research, we aimed to resolve contradictory results whether SOX9 plays a positive or negative role in melanoma progression and determine whether SOX9 and its closely related member SOX10 share the same or distinct targets in mediating their functions in melanoma.
Methods: Immunofluorescence, TCGA database and qPCR were used to analyze the correlation between the expression patterns and levels of SOX9, SOX10 and NEDD9 in melanoma patient samples. AlamarBlue, transwell invasion and colony formation assays in melanoma cell lines were conducted to investigate the epistatic relationship between SOX10 and NEDD9, as well as the effects of graded SOX9 expression levels.
For many macromolecular complexes, the inability to uniformly disperse solubilized specimen particles within vitreous ice films precludes their analysis by cryo-electron microscopy (cryo-EM). Here, we introduce a sample preparation process using "perpetually-hydrated" graphene oxide flakes as particle support films, and report vastly improved specimen dispersion. The new method introduced in this study incorporates hydrated graphene oxide flakes into a standard sample preparation regime, without the need for additional tools or devices, making it a cost-effective and easily adoptable alternative to currently available sample preparation approaches.
View Article and Find Full Text PDFPrevious studies have demonstrated the ability of reprogramming endochondral bone into induced pluripotent stem (iPS) cells, but whether similar phenomenon occurs in intramembranous bone remains to be determined. Here we adopted fluorescence-activated cell sorting-based strategy to isolate homogenous population of intramembranous calvarial osteoblasts from newborn transgenic mice carrying both and transgenes. Following retroviral transduction of Yamanaka factors (Oct4, Sox2, Klf4, and c-Myc), enriched population of osteoblasts underwent silencing of Osx1-GFP::Cre expression at early stage of reprogramming followed by late activation of Oct4-EGFP expression in the resulting iPS cells.
View Article and Find Full Text PDFFor many macromolecular complexes, the inability to uniformly disperse solubilized specimen particles within vitreous ice films precludes their analysis by cryo-electron microscopy (cryo-EM). Here, we introduce a sample preparation process using "perpetually-hydrated" graphene oxide flakes as particle support films, and report vastly improved specimen dispersion. Furthermore, we provide evidence that the presence of graphene oxide flakes in vitreous ice results in a significant reduction in electron beam-induced specimen decomposition.
View Article and Find Full Text PDFA new SEM-based in-line electron holography microscope has been under development. The microscope utilizes conventional SEM and BF-STEM functionality to allow for rapid searching of the specimen of interest, seamless interchange between SEM, BF-STEM and holographic imaging modes, and makes use of coherent low-energy in-line electron holography to obtain low-dose, high-contrast images of light element materials. We report here an overview of the instrumentation and first experimental results on gold nano-particles and carbon nano-fibers for system performance tests.
View Article and Find Full Text PDFWe have performed open cell transmission electron microscopy experiments through pure water vapor in the saturation pressure regime (>0.6 kPa), in a modern microscope capable of sub-Å resolution. We have systematically studied achievable pressure levels, stability and gas purity, effective thickness of the water vapor column and associated electron scattering processes, and the effect of gas pressure on electron optical resolution and image contrast.
View Article and Find Full Text PDFFollowing epithelial-mesenchymal transition, acquisition of avian trunk neural crest cell (NCC) polarity is prerequisite for directional delamination and migration, which in turn is essential for peripheral nervous system development. However, how this cell polarization is established and regulated remains unknown. Here we demonstrate that, using the RHOA biosensor in vivo and in vitro, the initiation of NCC polarization is accompanied by highly activated RHOA in the cytoplasm at the cell rear and its fluctuating activity at the front edge.
View Article and Find Full Text PDF