Diabetes poses a global health crisis affecting individuals across age groups and backgrounds, with a prevalence estimate of 700 million people worldwide by 2045. Current therapeutic strategies primarily rely on insulin therapy or hypoglycemic agents, which fail to address the root cause of the disease - the loss of pancreatic insulin-producing beta-cells. Therefore, bioassays that recapitulate intact islets are needed to enable drug discovery for beta-cell replenishment, protection from beta-cell loss, and islet-cell interactions.
View Article and Find Full Text PDFUnlabelled: Niclosamide, an FDA-approved oral anthelmintic drug, has broad biological activity including anticancer, antibacterial, and antiviral properties. Niclosamide has also been identified as a potent inhibitor of SARS-CoV-2 infection , generating interest in its use for the treatment or prevention of COVID-19. Unfortunately, there are several potential issues with using niclosamide for COVID-19, including low bioavailability, significant polypharmacology, high cellular toxicity, and unknown efficacy against emerging SARS-CoV-2 variants of concern.
View Article and Find Full Text PDFThe synthesis and structure activity relationship development of a pyrimidine series of heterocyclic Factor IXa inhibitors is described. Increased selectivity over Factor Xa inhibition was achieved through SAR expansion of the P1 element. Select compounds were evaluated in vivo to assess their plasma levels in rat.
View Article and Find Full Text PDFPursuing our earlier efforts in the himbacine-based thrombin receptor antagonist area, we have synthesized a series of compounds that incorporate heteroatoms in the C-ring of the tricyclic motif. This effort has resulted in the identification of several potent heterocyclic analogs with excellent affinity for the thrombin receptor. Several of these compounds demonstrated robust inhibition of platelet aggregation in an ex vivo model in cynomolgus monkeys following oral administration.
View Article and Find Full Text PDFThe synthesis and biological activity of a novel series of thrombin receptor antagonists is described. This series of compounds showed excellent in vitro and in vivo potency. The most potent compound 40 had an IC(50) of 7.
View Article and Find Full Text PDFThe metabolism of our prototypical thrombin receptor antagonist 1, Ki = 2.7 nM, was studied and three major metabolites (2, 4, and 5) were found. The structures of the metabolites were verified independently by synthesis.
View Article and Find Full Text PDFThe design, synthesis, and SAR studies of a structurally novel series of highly potent thrombin receptor (PAR-1) antagonists are described. Compound 30 is a highly potent thrombin receptor antagonist (IC(50)=6.3 nM), a related compound 36 showing efficacy in a monkey ex vivo study.
View Article and Find Full Text PDF