Sae2 promotes the repair of DNA double-strand breaks in The role of Sae2 is linked to the Mre11/Rad50/Xrs2 (MRX) complex, which is important for the processing of DNA ends into single-stranded substrates for homologous recombination. Sae2 has intrinsic endonuclease activity, but the role of this activity has not been assessed independently from its functions in promoting Mre11 nuclease activity. Here we identify and characterize separation-of-function mutants that lack intrinsic nuclease activity or the ability to promote Mre11 endonucleolytic activity.
View Article and Find Full Text PDFPost-replicational telomere end processing involves both extension by telomerase and resection to produce 3'-GT-overhangs that extend beyond the complementary 5'-CA-rich strand. Resection must be carefully controlled to maintain telomere length. At short de novo telomeres generated artificially by HO endonuclease in the G2 phase, we show that dna2-defective strains are impaired in both telomere elongation and sequential 5'-CA resection.
View Article and Find Full Text PDFDna2 is a dual polarity exo/endonuclease, and 5' to 3' DNA helicase involved in Okazaki Fragment Processing (OFP) and Double-Strand Break (DSB) Repair. In yeast, DNA2 is an essential gene, as expected for a DNA replication protein. Suppression of the lethality of dna2Δ mutants has been found to occur by two mechanisms: overexpression of RAD27 (scFEN1) , encoding a 5' to 3' exo/endo nuclease that processes Okazaki fragments (OFs) for ligation, or deletion of PIF1, a 5' to 3' helicase involved in mitochondrial recombination, telomerase inhibition and OFP.
View Article and Find Full Text PDFThe Mre11/Rad50/Xrs2 complex initiates IR repair by binding to the end of a double-strand break, resulting in 5' to 3' exonuclease degradation creating a single-stranded 3' overhang competent for strand invasion into the unbroken chromosome. The nuclease(s) involved are not well understood. Mre11 encodes a nuclease, but it has 3' to 5', rather than 5' to 3' activity.
View Article and Find Full Text PDFYeast Mrc1, ortholog of metazoan Claspin, is both a central component of normal DNA replication forks and a mediator of the S phase checkpoint. We report that Mrc1 interacts with Pol2, the catalytic subunit of DNA polymerase epsilon, essential for leading-strand DNA replication and for the checkpoint. In unperturbed cells, Mrc1 interacts independently with both the N-terminal and C-terminal halves of Pol2 (Pol2N and Pol2C).
View Article and Find Full Text PDFMost replicases are multi-subunit complexes. DNA polymerase epsilon from Saccharomyces cerevisiae is composed of four subunits: Pol2p, Dpb2p, Dpb3p, and Dpb4p. Pol2p and Dpb2p are essential.
View Article and Find Full Text PDFThe precise machineries required for two aspects of eukaryotic DNA replication, Okazaki fragment processing (OFP) and telomere maintenance, are poorly understood. In this work, we present evidence that Saccharomyces cerevisiae Pif1 helicase plays a wider role in DNA replication than previously appreciated and that it likely functions in conjunction with Dna2 helicase/nuclease as a component of the OFP machinery. In addition, we show that Dna2, which is known to associate with telomeres in a cell-cycle-specific manner, may be a new component of the telomere replication apparatus.
View Article and Find Full Text PDFTo elucidate the network that maintains high fidelity genome replication, we have introduced two conditional mutant alleles of DNA2, an essential DNA replication gene, into each of the approximately 4,700 viable yeast deletion mutants and determined the fitness of the double mutants. Fifty-six DNA2-interacting genes were identified. Clustering analysis of genomic synthetic lethality profiles of each of 43 of the DNA2-interacting genes defines a network (consisting of 322 genes and 876 interactions) whose topology provides clues as to how replication proteins coordinate regulation and repair to protect genome integrity.
View Article and Find Full Text PDFWe and others have proposed that faulty processing of arrested replication forks leads to increases in recombination and chromosome instability in Saccharomyces cerevisiae. Now we use the ribosomal DNA locus, which is a good model for all stages of DNA replication, to test this hypothesis. We showed previously that DNA replication pausing at the ribosomal DNA replication fork barrier (RFB) is accompanied by the occurrence of double-strand breaks near the RFB.
View Article and Find Full Text PDFWe have proposed that faulty processing of arrested replication forks leads to increases in recombination and chromosome instability in Saccharomyces cerevisiae and contributes to the shortened lifespan of dna2 mutants. Now we use the ribosomal DNA locus, which is a good model for all stages of DNA replication, to test this hypothesis. We show directly that DNA replication pausing at the ribosomal DNA replication fork barrier (RFB) is accompanied by the occurrence of double-strand breaks near the RFB.
View Article and Find Full Text PDFWe have found that the Dna2 helicase-nuclease, thought to be involved in maturation of Okazaki fragments, is a component of telomeric chromatin. We demonstrate a dynamic localization of Dna2p to telomeres that suggests a dual role for Dna2p, one in telomere replication and another, unknown function, perhaps in telomere capping. Both chromatin immunoprecipitation (ChIP) and immunofluorescence show that Dna2p associates with telomeres but not bulk chromosomal DNA in G(1) phase, when there is no telomere replication and the telomere is transcriptionally silenced.
View Article and Find Full Text PDFSurprisingly, the contribution of defects in DNA replication to the determination of yeast life span has never been directly investigated. We show that a replicative yeast helicase/nuclease, encoded by DNA2 and a member of the same helicase subfamily as the RecQ helicases, is required for normal life span. All of the phenotypes of old wild-type cells, for example, extended cell cycle time, age-related transcriptional silencing defects, and nucleolar reorganization, occur after fewer generations in dna2 mutants than in the wild type.
View Article and Find Full Text PDF