An acoustofluidic trap is used for accurate 3D cell proliferation and cell function analysis in levitation. The prototype trap can be integrated with any microscope setup, allowing continuous perfusion experiments with temperature and flow control under optical inspection. To describe the trap function, we present a mathematical and FEM-based COMSOL model for the acoustic mode that defines the nodal position of trapped objects in the spherical cavity aligned with the microscope field of view and depth of field.
View Article and Find Full Text PDFColorimetric tests for at-home health monitoring became popular 50 years ago with the advent of the urinalysis test strips, due to their reduced costs, practicality, and ease of operation. However, developing digital systems that can interface these sensors in an efficient manner remains a challenge. Efforts have been put towards the development of portable optical readout systems, such as smartphones.
View Article and Find Full Text PDFThe quantitative analysis of tear analytes in point-of-care settings can enable early diagnosis of ocular diseases. Here, a fluorescent scleral lens sensor is developed to quantitatively measure physiological levels of pH, Na , K , Ca , Mg , and Zn ions. Benzenedicarboxylic acid, a pH probe, displays a sensitivity of 0.
View Article and Find Full Text PDFCell culture assays for therapeutic drug screening today are fully automated. Vitality of the cells is monitored by different sensors. For such a system, we propose a new reader unit, which is capable of reading two different fluorescent sensors and electrical impedance in 24-well-plates.
View Article and Find Full Text PDFGoal: This contribution points out the need for well-defined and documented data processing protocols in microphysiometry, an evolving field of label-free cell assays. The sensitivity of the obtained cell metabolic rates toward different routines of raw data processing is evaluated.
Methods: A standard microphysiometric experiment structured in discrete measurement intervals was performed on a platform with a pH- and O -sensor readout.
Annu Int Conf IEEE Eng Med Biol Soc
September 2016
Active implant systems are becoming increasingly important in modern medicine. We describe the development of an implantable system for the monitoring of dissolved oxygen. Tissue oxygen saturation plays a leading role in many pathophysiological processes in the human body such as the growth of malignant tumors or the viability of transplanted organs.
View Article and Find Full Text PDFUsing modeling and simulation, we quantify the influence of spatiotemporal dynamics on the accuracy of data obtained from sensors placed in microscaled reaction volumes. The model refers to cellular reaction (i.e.
View Article and Find Full Text PDFMed Biol Eng Comput
February 2012
Personalized tumor chemotherapy depends on reliable assay methods, either based on molecular "predictive biomarkers" or on a direct, functional ex vivo assessment of cellular chemosensitivity. As a member of the latter category, a novel high-content platform is described monitoring human mamma carcinoma explants in real time and label-free before, during and after an ex vivo modeled chemotherapy. Tissue explants are sliced with a vibratome and laid into the microreaction chambers of a 24-well sensor test plate.
View Article and Find Full Text PDFTo overcome the problems of endpoint tests routinely required for EC50 determination, we utilized a novel automated high-content workstation and calculated a time-resolved EC50 value of MCF-7 mamma carcinoma cells treated with a pharmacologic agent. Measuring parameters were the cellular oxygen consumption and the extracellular acidification. These parameters were detected in real-time and label free with optochemical sensor spots in a modified 24-well sensor plate.
View Article and Find Full Text PDFCells are organic microsystems with functional compartments interconnected by complex signal chains. Intracellular signaling routes and signal reception from the extracellular environment are characterized by redundancy, i.e.
View Article and Find Full Text PDFThe recent development of an electronic test system based on silicon sensor-chips allows the continuous parallel recording of relative changes in extracellular acidification, oxygen consumption and electric impedance in living cells. The objective of this proof-of-principle study therefore, was to clarify whether this system can also be applied to live tissue slices thus providing a device for an ultimately envisioned chemosensitivity testing apparatus for individualized treatment schemes in cancer therapy. A prototype of the testing apparatus equipped with six individual measuring devices has been used to simultaneously analyze changes in extracellular acidification, oxygen consumption and electronic impedance in live liver tissue and compared to data obtained from a tumor cell line.
View Article and Find Full Text PDFImpedance sensors in thick film technology have been tested as a tool for electric cell-substrate impedance sensing. The screen printed Pt electrodes have a width of 250-400 microm. Electrodes and the surrounding ceramic chip substrate could be homogeneously grown with L-929 and Hela cells.
View Article and Find Full Text PDFArch Pharm (Weinheim)
December 2004
Chemotherapeutic drugs affect the metabolism of tumor cells regardless of the specific target of action. Basic parameters of cell metabolism are extrusion of acids into the microenvironment and oxygen consumption. To analyze these changes on living cells in real-time, a test system based on multiparametric chips with an array of sensors for monitoring pH and O(2) as well as electric impedance has been developed.
View Article and Find Full Text PDFTumor interstitium exhibits a microenvironment that differs from corresponding normal tissues. Tumor phenotype shows, for example, an elevated intracellular pH (pHi), a lowered extracellular pH (pHe), a low oxygen concentration and low glucose levels. These differences are caused by cell biological (so called intrinsic) factors, e.
View Article and Find Full Text PDFAn alternative assay for replacing animal experiments should serve the specific microphysiological needs of the cells and be endowed with multiparametric signal monitoring. These requirements are provided by a test system in which the key elements are biocompatible electronic sensor-chips. It is also connected to a medium perfusion set-up, which allows to control the supply of nutrients and test compounds, and the removal of culture medium.
View Article and Find Full Text PDFA constraint in the reliability of predictive chemosensitivity assays is linked to the fact that they analyze only a single cellular or biochemical parameter. A multiparametric test system using microsensor chips has been developed which can detect online microphysiological changes in living cells. Tumor cells were grown directly on glass- or silicon-based electronic sensor chips.
View Article and Find Full Text PDFMany different assays have been developed for testing the chemosensitivity of tumor cells in vitro, usually based on a single biochemical or cellular parameter. A multiparametric test system has been developed that accommodates on a single chip numerous sensors for metabolic parameters, deltapH and deltapO2, as well as for morphological changes. The cells grow directly on the chips and can be continuously monitored online up to several days.
View Article and Find Full Text PDF