The evolutionary changes from solitary to eusocial living in vertebrates and invertebrates are associated with the diversification of social interactions and the development of queen and worker castes. Despite strong innate patterns, our understanding of the mechanisms manifesting these sophisticated behaviors is still rudimentary. Here, we show that () manifests group-supporting behaviors in the honeybee () worker caste.
View Article and Find Full Text PDFTrends Genet
November 2024
A change of orbital state alters the coupling between ions and their surroundings drastically. Orbital excitations are hence key to understand and control interaction of ions. Rare-earth elements with strong magneto-crystalline anisotropy (MCA) are important ingredients for magnetic devices.
View Article and Find Full Text PDFFree-electron lasers provide bright, ultrashort, and monochromatic x-ray pulses, enabling novel spectroscopic measurements not only with femtosecond temporal resolution: The high fluence of their x-ray pulses can also easily enter the regime of the non-linear x-ray-matter interaction. Entering this regime necessitates a rigorous analysis and reliable prediction of the relevant non-linear processes for future experiment designs. Here, we show non-linear changes in the -edge absorption of metallic nickel thin films, measured with fluences up to 60 J/cm.
View Article and Find Full Text PDFSex in honeybees, , is genetically determined by heterozygous versus homo/hemizygous genotypes involving numerous alleles at the single complementary sex determination locus. The molecular mechanism of sex determination is however unknown because there are more than 4950 known possible allele combinations, but only two sexes in the species. We show how protein variants expressed from complementary sex determiner () gene determine sex.
View Article and Find Full Text PDFFemtosecond transient soft X-ray absorption spectroscopy (XAS) is a very promising technique that can be employed at X-ray free-electron lasers (FELs) to investigate out-of-equilibrium dynamics for material and energy research. Here, a dedicated setup for soft X-rays available at the Spectroscopy and Coherent Scattering (SCS) instrument at the European X-ray Free-Electron Laser (European XFEL) is presented. It consists of a beam-splitting off-axis zone plate (BOZ) used in transmission to create three copies of the incoming beam, which are used to measure the transmitted intensity through the excited and unexcited sample, as well as to monitor the incoming intensity.
View Article and Find Full Text PDFUnderstanding of the neural bases for complex behaviors in Hymenoptera insect species has been limited by a lack of tools that allow measuring neuronal activity simultaneously in different brain regions. Here, we developed the first pan-neuronal genetic driver in a Hymenopteran model organism, the honey bee, and expressed the calcium indicator GCaMP6f under the control of the honey bee synapsin promoter. We show that GCaMP6f is widely expressed in the honey bee brain, allowing to record neural activity from multiple brain regions.
View Article and Find Full Text PDFAnimals develop sex-specific morphological structures that are diverse between organisms. However, understanding the developmental and evolutionary mechanisms governing these traits is still limited and largely restricted to DM domain genes, which are conserved, sex-specific developmental regulators identified in genetic models. Here, we report a sex-specific developmental regulator gene, glubschauge (glu) that selectively regulates sexually dimorphic eye differentiation in honeybees.
View Article and Find Full Text PDFThe electronic excitation occurring on adsorbates at ultrafast timescales from optical lasers that initiate surface chemical reactions is still an open question. Here, we report the ultrafast temporal evolution of x-ray absorption spectroscopy (XAS) and x-ray emission spectroscopy (XES) of a simple well-known adsorbate prototype system, namely carbon (C) atoms adsorbed on a nickel [Ni(100)] surface, following intense laser optical pumping at 400 nm. We observe ultrafast (∼100 fs) changes in both XAS and XES showing clear signatures of the formation of a hot electron-hole pair distribution on the adsorbate.
View Article and Find Full Text PDFWe report on carbon monoxide desorption and oxidation induced by 400 nm femtosecond laser excitation on the O/Ru(0001) surface probed by time-resolved x-ray absorption spectroscopy (TR-XAS) at the carbon K-edge. The experiments were performed under constant background pressures of CO (6 × 10 Torr) and O (3 × 10 Torr). Under these conditions, we detect two transient CO species with narrow 2π* peaks, suggesting little 2π* interaction with the surface.
View Article and Find Full Text PDFMaterials with insulator-metal transitions promise advanced functionalities for future information technology. Patterning on the microscale is key for miniaturized functional devices, but material properties may vary spatially across microstructures. Characterization of these miniaturized devices requires electronic structure probes with sufficient spatial resolution to understand the influence of structure size and shape on functional properties.
View Article and Find Full Text PDFWide-band-gap insulators such as NiO offer the exciting prospect of coherently manipulating electronic correlations with strong optical fields. Contrary to metals where rapid dephasing of optical excitation electronic processes occurs, the sub-gap excitation in charge-transfer insulators has been shown to couple to low-energy bosonic excitations. However, it is currently unknown if the bosonic dressing field is composed of phonons or magnons.
View Article and Find Full Text PDFExtending nonlinear spectroscopic techniques into the x-ray domain promises unique insight into photoexcited charge dynamics, which are of fundamental and applied interest. We report on the observation of a third-order nonlinear process in lithium fluoride (LiF) at a free-electron laser. Exploring the yield of four-wave mixing (FWM) in resonance with transitions to strongly localized core exciton states versus delocalized Bloch states, we find resonant FWM to be a sensitive probe for the degree of charge localization: Substantial sum- and difference-frequency generation is observed exclusively when in a one- or three-photon resonance with a LiF core exciton, with a dipole forbidden transition affecting details of the nonlinear response.
View Article and Find Full Text PDFFunctional genetic studies in honeybees have been limited to transposon mediated transformation and site directed mutagenesis tools. However, site- and sequence-specific manipulations that insert DNA fragments or replace sequences at specific target sites are lacking. Such tools would enable the tagging of proteins, the expression of reporters and site-specific amino acid changes, which are all gold standard manipulations for physiological, organismal, and genetic studies.
View Article and Find Full Text PDFThe honeybee is a haplodiploid organism in which sexual development is determined by the complementary sex determiner (csd) gene and realized by sex-specific splicing processes involving the feminizer (fem) gene. We used high throughput transcriptome sequencing (RNA-Seq) to characterize the transcriptional differences between the sexes caused by the fertilization and sex determination processes in honeybee (Apis mellifera) embryos. We identified 758, 372 and 43 differentially expressed genes (DEGs) and 58, 176 and 233 differentially spliced genes (DSGs) in 10-15-h-old, 25-40-h-old and 55-70-h-old female and male embryos, respectively.
View Article and Find Full Text PDFWe use a pump-probe scheme to measure the time evolution of the C K-edge x-ray absorption spectrum from CO/Ru(0001) after excitation by an ultrashort high-intensity optical laser pulse. Because of the short duration of the x-ray probe pulse and precise control of the pulse delay, the excitation-induced dynamics during the first picosecond after the pump can be resolved with unprecedented time resolution. By comparing with density functional theory spectrum calculations, we find high excitation of the internal stretch and frustrated rotation modes occurring within 200 fs of laser excitation, as well as thermalization of the system in the picosecond regime.
View Article and Find Full Text PDFWe demonstrate for the case of photoexcited [Ru(2,2'-bipyridine)] how femtosecond resonant inelastic X-ray scattering (RIXS) at the ligand K-edge allows one to uniquely probe changes in the valence electronic structure following a metal-to-ligand charge-transfer (MLCT) excitation. Metal-ligand hybridization is probed by nitrogen-1s resonances providing information on both the electron-accepting ligand in the MLCT state and the hole density of the metal center. By comparing to spectrum calculations based on density functional theory, we are able to distinguish the electronic structure of the electron-accepting ligand and the other ligands and determine a temporal upper limit of (250 ± 40) fs for electron localization following the charge-transfer excitation.
View Article and Find Full Text PDFX-ray absorption near-edge structure (XANES) spectroscopy provides element specificity and is a powerful experimental method to probe local unoccupied electronic structures. In the soft x-ray regime, it is especially well suited for the study of 3-metals and light elements such as nitrogen. Recent developments in vacuum-compatible liquid flat jets have facilitated soft x-ray transmission spectroscopy on molecules in solution, providing information on valence charge distributions of heteroatoms and metal centers.
View Article and Find Full Text PDFHoneybees rely on nectar as their main source of carbohydrates. Sucrose, glucose, and fructose are the main components of plant nectars. Intriguingly, honeybees express only 3 putative sugar receptors (AmGr1, AmGr2, and AmGr3), which is in stark contrast to many other insects and vertebrates.
View Article and Find Full Text PDFThe transient dynamics of carbon monoxide (CO) molecules on a Ru(0001) surface following femtosecond optical laser pump excitation has been studied by monitoring changes in the unoccupied electronic structure using an ultrafast X-ray free-electron laser (FEL) probe. The particular symmetry of perpendicularly chemisorbed CO on the surface is exploited to investigate how the molecular orientation changes with time by varying the polarization of the FEL pulses. The time evolution of spectral features corresponding to the desorption precursor state was well distinguished due to the narrow line-width of the C K-edge in the X-ray absorption (XA) spectrum, illustrating that CO molecules in the precursor state rotated freely and resided on the surface for several picoseconds.
View Article and Find Full Text PDFX-ray absorption spectroscopy (XAS) is a powerful element-specific technique that allows the study of structural and chemical properties of matter. Often an indirect method is used to access the X-ray absorption (XA). This work demonstrates a new XAS implementation that is based on off-axis transmission Fresnel zone plates to obtain the XA spectrum of LaSrMnO by analysis of three emission lines simultaneously at the detector, namely the O 2p-1s, Mn 3s-2p and Mn 3d-2p transitions.
View Article and Find Full Text PDFA setup for dispersive X-ray absorption spectroscopy (XAS), employing a new reference scheme, has been implemented and tested at the soft X-ray free-electron laser (FEL) FLASH in Hamburg. A transmission grating was used to split the FEL beam into two copies (signal and reference). The spectral content of both beams was simultaneously measured for intensity normalization within the FEL bandwidth on a shot-to-shot basis.
View Article and Find Full Text PDFHighly social insects are characterized by caste dimorphism, with distinct size differences of reproductive organs between fertile queens and the more or less sterile workers. An abundance of nutrition or instruction via diet-specific compounds has been proposed as explanations for the nutrition-driven queen and worker polyphenism. Here, we further explored these models in the honeybee (Apis mellifera) using worker nutrition rearing and a novel mutational screening approach using the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) method.
View Article and Find Full Text PDFWe report on atom-specific activation of CO oxidation on Ru(0001) via resonant X-ray excitation. We show that resonant 1 core-level excitation of atomically adsorbed oxygen in the co-adsorbed phase of CO and oxygen directly drives CO oxidation. We separate this direct resonant channel from indirectly driven oxidation via X-ray induced substrate heating.
View Article and Find Full Text PDFShort linear motifs (SLiMs) can play pivotal functional roles in proteins, such as targeting proteins to specific subcellular localizations, modulating the efficiency of translation and tagging proteins for degradation. Until recently we had little knowledge about SLiM evolution. Only a few amino acids in these motifs are functionally important, making them likely to evolve and suggesting that they can play key roles in protein evolution.
View Article and Find Full Text PDF