Publications by authors named "Martin Babor"

Inherently chiral compounds, such as calixarenes, are chiral due to a nonplanar three-dimensional (3D) structure. Determining their conformation is essential to understand their properties, with nuclear magnetic resonance (NMR) spectroscopy being one applicable method. Using alignment media to measure residual dipolar couplings (RDCs) to obtain structural information is advantageous when classical NMR parameters like the nuclear Overhauser effect (NOE) or -couplings fail.

View Article and Find Full Text PDF

The structure-property relations are examined for apremilast cocrystals and solvates in this work. A unique and large dataset of multicomponent crystal forms is presented including 7 cocrystals and 12 solvates. In total, 15 of the presented multicomponent forms and their crystal structures are published here for the first time.

View Article and Find Full Text PDF

The black market for new psychoactive substances has been constantly evolving and the substances that appear on this market cause a considerable number of issues, in extreme cases leading to human deaths. While monitoring the drug black market, we detected a sample of a dissociative anesthetic methoxphenidine, the salt of which contained an unusual anion in the form of bromo- and chloro-zincate complex. Concerning the unknown and potentially hazardous properties of this sample, we performed an in vitro cytotoxicity screening in cell lines of various origins (e.

View Article and Find Full Text PDF

Oxidized phenoxathiin-based macrocycles, easily accessible thiacalix[4]arene derivatives, consist of a unique set of structural elements representing a key prerequisite for the unexpected reactivity described in this paper. As proposed, the internal strain, imposed by the presence of a heterocyclic moiety, together with a number of electron-withdrawing groups (SO) opens the way to the cleavage of the macrocyclic skeleton through a cascade of three SAr reactions triggered by the nucleophilic attack of an SH anion. The whole transformation, which is unparalleled in classical calixarene chemistry, leads to unique linear sulfinic acid derivatives with a rearranged phenoxathiin moiety that can serve as building blocks for macrocyclic systems of a new type.

View Article and Find Full Text PDF

The sulfonyl analogue of phenoxathiin-based thiacalix[4]arene, easily accessible from the parent thiacalix[4]arene, reacts with sodium alkoxides to yield a cleaved product representing a novel type of macrocyclic skeleton with a quasi-calixarene structure. As shown by comparison with other derivatives, the internal strain imposed by the heterocyclic moiety is a driving force of this SNAr reaction.

View Article and Find Full Text PDF

A new co-crystal of pharmaceutical active ingredient Apremilast was successfully designed in this work. The discovered co-crystal with benzoic acid significantly improves key properties like the dissolution and stability of an otherwise poorly soluble Apremilast. A crystallization process was developed, which includes efficient solvent selection and ternary phase diagram construction to minimize risks during scale up.

View Article and Find Full Text PDF

2,14-Dithiacalix[4]arene, prepared on a multigram scale, was alkylated using the reaction conditions well known from the chemistry of classical calixarenes or thiacalixarenes to study the specific conformational preferences and dynamic behavior of the corresponding tetraalkylated derivatives. As proved by the combination of the X-ray crystallography and dynamic NMR techniques, the presence of mixed bridges (-CH- and -S- groups) within the basic skeleton brings about considerable changes in the mutual ratios of the individual conformers compared to the parent macrocycles. Interestingly, certain conformers, hardly accessible for common calixarenes/thiacalixarenes (e.

View Article and Find Full Text PDF

Determination of the absolute configuration of organic molecules is essential in drug development and the subsequent approval process. We show that this determination is possible through electron diffraction using nanocrystalline material. Ab initio structure determination by electron diffraction has so far been limited to compounds that maintain their crystallinity after a dose of one electron per square angstrom or more.

View Article and Find Full Text PDF

Multicomponent solid forms of active pharmaceutical ingredients represent a modern method of tuning their physicochemical properties. Typically, salts are the most commonly used multicomponent solid form in the pharmaceutical industry. More than 38% are formulated as organic cations.

View Article and Find Full Text PDF

The generation of solid salts of organic molecules is important to the chemical and pharmaceutical industry. Commonly used salt screening methods consume a lot of resources. We employed a combination of ion exchange screening and vapour diffusion for crystallization.

View Article and Find Full Text PDF