Publications by authors named "Martin B Plenio"

The combination of chain-mapping and tensor-network techniques provides a powerful tool for the numerically exact simulation of open quantum systems interacting with structured environments. However, these methods suffer from a quadratic scaling with the physical simulation time, and therefore, they become challenging in the presence of multiple environments. This is particularly true when fermionic environments, well-known to be highly correlated, are considered.

View Article and Find Full Text PDF

Parahydrogen-induced polarization (PHIP) is a potent technique for generating target molecules with high nuclear spin polarization. The PHIP process involves a chemical reaction between parahydrogen and a target molecule, followed by the transformation of nuclear singlet spin order into magnetization of a designated target nucleus through magnetic field manipulations. Although the singlet-to-magnetization polarization transfer process works effectively at moderate concentrations, it is observed to become much less efficient at high molar polarization, defined as the product of polarization and concentration.

View Article and Find Full Text PDF

We present a quantum sensing technique that utilizes a sequence of π pulses to cyclically drive the qubit dynamics along a geodesic path of adiabatic evolution. This approach effectively suppresses the effects of both decoherence noise and control errors while simultaneously removing unwanted resonance terms, such as higher harmonics and spurious responses commonly encountered in dynamical decoupling control. As a result, our technique offers robust, wide-band, unambiguous, and high-resolution quantum sensing capabilities for signal detection and individual addressing of quantum systems, including spins.

View Article and Find Full Text PDF

Parahydrogen-induced polarization (PHIP) is an inexpensive way to produce hyperpolarized molecules with polarization levels of >10 % in the solution-state, but is strongly limited in generality since it requires chemical reactions/ interactions with H. Here we report a new method to widen the scope of PHIP hyperpolarization: a source molecule is produced via PHIP with high C polarization, and precipitated out of solution together with a target species. Spin diffusion within the solid carries the polarization onto C spins of the target, which can then be dissolved for solution-state applications.

View Article and Find Full Text PDF

Nuclear spin hyperpolarization techniques, such as dynamic nuclear polarization (DNP) and parahydrogen-induced polarization (PHIP), have revolutionized nuclear magnetic resonance and magnetic resonance imaging. In these methods, a readily available source of high spin order, either electron spins in DNP or singlet states in hydrogen for PHIP, is brought into close proximity with nuclear spin targets, enabling efficient transfer of spin order under external quantum control. Despite vast disparities in energy scales and interaction mechanisms between electron spins in DNP and nuclear singlet states in PHIP, a pseudo-spin formalism allows us to establish an intriguing equivalence.

View Article and Find Full Text PDF

Conducting precise electronic-vibrational dynamics simulations of molecular systems poses significant challenges when dealing with realistic environments composed of numerous vibrational modes. Here, we introduce a technique for the construction of effective phonon spectral densities that capture accurately open-system dynamics over a finite time interval of interest. When combined with existing nonperturbative simulation tools, our approach can reduce significantly the computational costs associated with many-body open-system dynamics.

View Article and Find Full Text PDF

Defect centers in a nanodiamond (ND) allow the detection of tiny magnetic fields in their direct surroundings, rendering them as an emerging tool for nanoscale sensing applications. Eumelanin, an abundant pigment, plays an important role in biology and material science. Here, for the first time, we evaluate the comproportionation reaction in eumelanin by detecting and quantifying semiquinone radicals through the nitrogen-vacancy color center.

View Article and Find Full Text PDF

Background: Epigenetic mechanisms are informational cellular processes instructing normal and diseased phenotypes. They are associated with DNA but without altering the DNA sequence. Whereas chemical processes like DNA methylation or histone modifications are well-accepted epigenetic mechanisms, we herein propose the existence of an additional quantum physics layer of epigenetics.

View Article and Find Full Text PDF

We study asymptotic state transformations in continuous variable quantum resource theories. In particular, we prove that monotones displaying lower semicontinuity and strong superadditivity can be used to bound asymptotic transformation rates in these settings. This removes the need for asymptotic continuity, which cannot be defined in the traditional sense for infinite-dimensional systems.

View Article and Find Full Text PDF

The elucidation of the mechanisms underpinning chirality-induced spin selectivity remains an outstanding scientific challenge. Here we consider the role of delocalized phonon modes in electron transport in chiral structures and demonstrate that spin selectivity can originate from spin-dependent energy and momentum conservation in electron-phonon scattering events. While this mechanism is robust to the specific nature of the vibrational modes, the degree of spin polarization depends on environmental factors, such as the specific temperature and phonon relaxation rates, as well as the presence of external driving fields.

View Article and Find Full Text PDF

Multiphoton entangled quantum states are key to advancing quantum technologies such as multiparty quantum communications, quantum sensing, or quantum computation. Their scalable generation, however, remains an experimental challenge. Current methods for generating these states rely on stitching together photons from probabilistic sources, and state generation rates drop exponentially in the number of photons.

View Article and Find Full Text PDF

We exploit the properties of chain mapping transformations of bosonic environments to identify a finite collection of modes able to capture the characteristic features, or fingerprint, of the environment. Moreover we show that the countable infinity of residual bath modes can be replaced by a universal Markovian closure, namely, a small collection of damped modes undergoing a Lindblad-type dynamics whose parametrization is independent of the spectral density under consideration. We show that the Markovian closure provides a quadratic speedup with respect to standard chain mapping techniques and makes the memory requirement independent of the simulation time, while preserving all the information on the fingerprint modes.

View Article and Find Full Text PDF

Shor's factoring algorithm provides a superpolynomial speedup over all known classical factoring algorithms. Here, we address the question of which quantum properties fuel this advantage. We investigate a sequential variant of Shor's algorithm with a fixed overall structure and identify the role of coherence for this algorithm quantitatively.

View Article and Find Full Text PDF

Hydrogen peroxide (HO) plays an important role in various signal transduction pathways and regulates important cellular processes. However, monitoring and quantitatively assessing the distribution of HO molecules inside living cells requires a nanoscale sensor with molecular-level sensitivity. Herein, we show the first demonstration of sub-10 nm-sized fluorescent nanodiamonds (NDs) as catalysts for the decomposition of HO and the production of radical intermediates at the nanoscale.

View Article and Find Full Text PDF

In 1957 Feynman suggested that the quantum or classical character of gravity may be assessed by testing the gravitational interaction due to source masses in superposition. However, in all proposed experimental realizations using matter-wave interferometry, the extreme weakness of this interaction requires pure initial states with extreme squeezing to achieve measurable effects of nonclassical interaction for reasonable experiment durations. In practice, the systems that can be prepared in such nonclassical states are limited to small masses, which in turn limits the strength of their interaction.

View Article and Find Full Text PDF

We study the nonequilibrium dynamics of electron transmission from a straight waveguide to a helix with spin-orbit coupling. Transmission is found to be spin-selective and can lead to large spin polarizations of the itinerant electrons. The degree of spin selectivity depends on the width of the interface region, and no polarization is found for single-point couplings.

View Article and Find Full Text PDF

Nuclear spin hyperpolarization provides a promising route to overcome the challenges imposed by the limited sensitivity of nuclear magnetic resonance. Here we demonstrate that dissolution of spin-polarized pentacene-doped naphthalene crystals enables transfer of polarization to target molecules via intermolecular cross-relaxation at room temperature and moderate magnetic fields (1.45 T).

View Article and Find Full Text PDF

We present a ground-state cooling scheme for the mechanical degrees of freedom of mesoscopic magnetic particles levitated in low-frequency traps. Our method makes use of a binary sensor and suitably shaped pulses to perform weak, adaptive measurements on the position of the magnet. This allows us to precisely determine the position and momentum of the particle, transforming the initial high-entropy thermal state into a pure coherent state.

View Article and Find Full Text PDF

In this paper, we review the latest developments in miniaturization of NMR systems with an emphasis on low-field NMR. We briefly cover the topics of magnet and coil miniaturization, elaborating on the advantages and disadvantages of miniaturized coils for different applications. The main part of the article is dedicated to progress in NMR electronics.

View Article and Find Full Text PDF

Coherent superposition and entanglement are two fundamental aspects of nonclassicality. Here we provide a quantitative connection between the two on the level of operations by showing that the dynamical coherence of an operation upper bounds the dynamical entanglement that can be generated from it with the help of additional incoherent operations. In case a particular choice of monotones based on the relative entropy is used for the quantification of these dynamical resources, this bound can be achieved.

View Article and Find Full Text PDF

A general attenuator Φ_{λ,σ} is a bosonic quantum channel that acts by combining the input with a fixed environment state σ in a beam splitter of transmissivity λ. If σ is a thermal state, the resulting channel is a thermal attenuator, whose quantum capacity vanishes for λ≤1/2. We study the quantum capacity of these objects for generic σ, proving a number of unexpected results.

View Article and Find Full Text PDF

Quantum coherence is a fundamental resource that quantum technologies exploit to achieve performance beyond that of classical devices. A necessary prerequisite to achieve this advantage is the ability of measurement devices to detect coherence from the measurement statistics. Based on a recently developed resource theory of quantum operations, here we quantify experimentally the ability of a typical quantum-optical detector, the weak-field homodyne detector, to detect coherence.

View Article and Find Full Text PDF

Biocompatible nanoscale probes for sensitive detection of paramagnetic species and molecules associated with their (bio)chemical transformations would provide a desirable tool for a better understanding of cellular redox processes. Here, we describe an analytical tool based on quantum sensing techniques. We magnetically coupled negatively charged nitrogen-vacancy (NV) centers in nanodiamonds (NDs) with nitroxide radicals present in a bioinert polymer coating of the NDs.

View Article and Find Full Text PDF

Models of quantum gravity imply a fundamental revision of our description of position and momentum that manifests in modifications of the canonical commutation relations. Experimental tests of such modifications remain an outstanding challenge. These corrections scale with the mass of test particles, which motivates experiments using macroscopic composite particles.

View Article and Find Full Text PDF

We extend the concept of dynamical decoupling from spin to mechanical degrees of freedom of macroscopic objects, for application in interferometry. In this manner, the superposition of matter waves can be made resilient to many important sources of noise when these are driven along suitable paths in space. As a concrete implementation, we present the case of levitated (or free falling) nanodiamonds hosting a color center in a magnetic field gradient.

View Article and Find Full Text PDF