Publications by authors named "Martin Arundell"

We report a new, autonomous Lab-on-Chip (LOC) microfluidic pH sensor with a 6000 m depth capability, ten times the depth capability of the state of the art autonomous spectrophotometric sensor. The pH is determined spectrophotometrically using purified -Cresol Purple indicator dye offering high precision (<0.001 pH unit measurement reproducibility), high frequency (every 8 min) measurements on the total proton scale from the surface to the deep ocean (to 600 bar).

View Article and Find Full Text PDF

Ageing is associated in many organisms with a reduction in motor movements. We have previously shown that the rate of feeding movements of the pond snail, Lymnaea, decreased with age but the underlying cause is not fully understood. Here, we show that dopamine in the cerebro-buccal complex is an important signalling molecule regulating feeding frequency in Lymnaea and that ageing is associated with a decrease in CNS dopamine.

View Article and Find Full Text PDF

An electrochemical anti-fouling method, based upon the generation of chlorine from seawater, was applied to a proprietary design of Lab on a Chip conductivity, temperature and dissolved oxygen sensor. The method was evaluated using PCR after a six-week field trial in which it significantly reduced the burden of bacterial biofouling.

View Article and Find Full Text PDF

The electrokinetic transport behavior of λ-DNA (48 kbp) in 20 nm-high fused-silica nanoslits in the presence of short-chain PVP is investigated. Mobility and video data show a number of phenomena that are typical of DNA transport through gels or polymer solutions, thus indicative of rigid migration obstacles in the DNA pathway. Calculations show that a several nanometer thin layer of wall-adsorbed PVP ('nano-gel') can provide such a rigid obstacle matrix to the DNA.

View Article and Find Full Text PDF

The rapid prototyping of a reversible and one step moulded compartmentalised neuron glass/PDMS device with a thin wall barrier directly adjacent to the reservoirs is presented. A simple moulding technique to produce these devices results in a barrier of 560 μm where the 3 μm deep by 8 μm wide channels can be reversibly fabricated in either the glass base or PDMS compartmentalised mould depending on the type of application required. Using glass substrates with commercially laser engraved microchannels, both the PDMS planar and PDMS channelled device can be easily fabricated in a standard laboratory.

View Article and Find Full Text PDF

Microelectrode amperometry is uniquely suited for characterising the dynamics of neurotransmitter release, as it offers unparalleled spatial and temporal resolution. We have used carbon fibre microelectrodes to study release of the monoamine neurotransmitter serotonin (5-HT) and the gaseous transmitter nitric oxide (NO) in intact central nervous system of the water snail, Lymnaea stagnalis. Analysis of spontaneous vesicular release of 5-HT and depolarisation-induced release of NO reveals significant differences with ageing that may be associated with changes in protein structure and function.

View Article and Find Full Text PDF

A hybrid microfluidic device that uses hydrodynamic forces to separate human plasma from blood cells has been designed and fabricated and the advantageous effects of temperature and flow rates are investigated in this paper. The blood separating device includes an inlet which is reduced by approximately 20 times to a small constrictor channel, which then opens out to a larger output channel with a small lateral channel for the collection of plasma. When tested the device separated plasma from whole blood using a wide range of flow rates, between 50 microl min(-1) and 200 microl min(-1), at the higher flow rates injected by hand and at temperatures ranging from 23 degrees C to 50 degrees C, the latter resulting in an increase in the cell-free layer of up to 250%.

View Article and Find Full Text PDF

This study utilised the pond snail, Lymnaea to examine the contribution that alterations in serotonergic signalling make to age-related changes in feeding. Age-related decreases in 5-HIAA levels in feeding ganglia were positively correlated with a decrease in the number of sucrose-evoked bites and negatively correlated with an increase in inter-bite interval, implicating alterations in serotonergic signalling in the aged phenotype. Analysis of the serotonergic cerebral giant cell (CGC) input to the protraction motor neurone (B1) demonstrated that fluoxetine (10-100 nM) increased the amplitude/duration of the evoked EPSP in both young and middle aged but not in old neurones, suggesting an age-related attenuation of the serotonin transporter.

View Article and Find Full Text PDF

This article presents the fabrication and characterisation of a high-speed detection micro-Coulter counter with two-dimensional (2D) adjustable aperture and differential impedance detection. The developed device has been fabricated from biocompatible and transparent materials (polymer and glass) and uses the principle of hydrodynamic focusing in two dimensions. The use of a conductive solution for the sample flux and non-conductive solutions for the focalising fluxes provides an adjustable sample flow where particles are aligned and the resistive response concentrated, consequently enhancing the sensitivity and versatility of the device.

View Article and Find Full Text PDF

We have fabricated a six individual addressable gold working electrode microarray. The device is wirebonded to an eight-pin DIL package that can be easily interconnected to an external multi-channel potentiostat. A polyion complex film coating on the electrode surface provides a suitable coating for the growth of cells.

View Article and Find Full Text PDF

Multiple film-coated nitric oxide sensors have been fabricated using Nafion and electropolymerized polyeugenol or o-phenylenediamine on 30-microm carbon fiber disk electrodes. This is a rare study that utilizes disk electrodes rather than the widely used protruding tip microelectrodes in order to measure from a biological environment. These electrodes have been used to evaluate the differences in nitric oxide release between two different identified neurons in the pond snail, Lymnaea stagnalis.

View Article and Find Full Text PDF

Although voltammetry has proved an important tool for unraveling the dynamics of specific neurotransmitter molecules during the past decade, it has been very difficult to monitor more than one neurotransmitter simultaneously. In this work, we present a voltammetric methodology that allows discrimination between dopamine and serotonin, two important neurotransmitter molecules with very similar electrochemical properties, in the presence of high concentrations of ascorbate. We combined the application of a novel large-amplitude/high-frequency voltage excitation with signal processing techniques valid for the analysis of nonstationary and nonlinear phenomena.

View Article and Find Full Text PDF

Using the CNS of Lymnaea stagnalis a method is described for the rapid analysis of neurotransmitters and their metabolites using high performance liquid chromatography coupled with electrochemical detection. Tissue samples were homogenised in ice-cold 0.1 M perchloric acid and centrifuged.

View Article and Find Full Text PDF

Surface-enhanced resonance Raman scattering (SERRS) of a model derivative of TNT was detected using a microflow cell designed within the framework of the lab-on-a-chip concept, using only the analyte and readily available reagents. The SERRS substrate, silver colloid, was prepared in situ, on-chip, by borohydride reduction of silver nitrate. The silver colloid was imaged within the chip using a white light microscope in either transmission or, due to the high reflectivity of the colloid, reflection mode.

View Article and Find Full Text PDF