Preeclampsia is a pregnancy disorder with substantial perinatal and maternal morbidity and mortality. Pregnant women at risk of preeclampsia would benefit from early detection for follow-up, timely interventions and delivery. Several attempts have been made to identify protein biomarkers of preeclampsia, but findings vary with demographics, clinical characteristics, and time of sampling.
View Article and Find Full Text PDFBackground: Preterm birth (PTB) is a serious health problem. PTB complications is the main cause of death in infants under five years of age worldwide. The ability to accurately predict risk for PTB during early pregnancy would allow early monitoring and interventions to provide personalized care, and hence improve outcomes for the mother and infant.
View Article and Find Full Text PDFDisease categories traditionally reflect a historical clustering of clinical phenotypes based on biologic and nonbiologic features. Multiomics approaches have striven to identify signatures to develop individualized categorizations through tests and/or therapies for 'personalized' medicine. Precision health classifies clinical syndromes into endotype clusters based on novel technological advancements, which can reveal insights into the etiologies of phenotypical syndromes.
View Article and Find Full Text PDFBackground: Postoperative cognitive decline (POCD) is the predominant complication affecting patients over 60 years old following major surgery, yet its prediction and prevention remain challenging. Understanding the biological processes underlying the pathogenesis of POCD is essential for identifying mechanistic biomarkers to advance diagnostics and therapeutics. This study aimed to provide a comprehensive analysis of immune cell trajectories differentiating patients with and without POCD and to derive a predictive score enabling the identification of high-risk patients during the preoperative period.
View Article and Find Full Text PDFBackground: Aldehyde dehydrogenase 2 (ALDH2) is critical for alcohol metabolism by converting acetaldehyde to acetic acid. In East Asian descendants, an inactive genetic variant in ALDH2, rs671, triggers an alcohol flushing response due to acetaldehyde accumulation. As alcohol flushing is not exclusive to those of East Asian descent, we questioned whether additional ALDH2 genetic variants can drive facial flushing and inefficient acetaldehyde metabolism using human testing and biochemical assays.
View Article and Find Full Text PDFThe complexity of preterm birth (PTB), both spontaneous and medically indicated, and its various etiologies and associated risk factors pose a significant challenge for developing tools to accurately predict risk. This review focuses on the discovery of proteomics signatures that might be useful for predicting spontaneous PTB or preeclampsia, which often results in PTB. We describe methods for proteomics analyses, proteomics biomarker candidates that have so far been identified, obstacles for discovering biomarkers that are sufficiently accurate for clinical use, and the derivation of composite signatures including clinical parameters to increase predictive power.
View Article and Find Full Text PDFUnlabelled: Postoperative cognitive decline (POCD) is the predominant complication affecting elderly patients following major surgery, yet its prediction and prevention remain challenging. Understanding biological processes underlying the pathogenesis of POCD is essential for identifying mechanistic biomarkers to advance diagnostics and therapeutics. This longitudinal study involving 26 elderly patients undergoing orthopedic surgery aimed to characterize the impact of peripheral immune cell responses to surgical trauma on POCD.
View Article and Find Full Text PDFAdoption of high-content omic technologies in clinical studies, coupled with computational methods, has yielded an abundance of candidate biomarkers. However, translating such findings into bona fide clinical biomarkers remains challenging. To facilitate this process, we introduce Stabl, a general machine learning method that identifies a sparse, reliable set of biomarkers by integrating noise injection and a data-driven signal-to-noise threshold into multivariable predictive modeling.
View Article and Find Full Text PDFAdvanced measurement and data storage technologies have enabled high-dimensional profiling of complex biological systems. For this, modern multiomics studies regularly produce datasets with hundreds of thousands of measurements per sample, enabling a new era of precision medicine. Correlation analysis is an important first step to gain deeper insights into the coordination and underlying processes of such complex systems.
View Article and Find Full Text PDFPreterm birth (PTB) is the leading cause of infant mortality globally. Research has focused on developing predictive models for PTB without prioritizing cost-effective interventions. Physical activity and sleep present unique opportunities for interventions in low- and middle-income populations (LMICs).
View Article and Find Full Text PDFBackground: Decreasing variability in time-intensive tasks during cardiac surgery may reduce total procedural time, lower costs, reduce clinician burnout, and improve patient access. The relative contribution and variability of surgeon control time (SCT) and anesthesia control time (ACT) to total procedural time is unknown.
Methods: A total of 669 patients undergoing coronary artery bypass graft (CABG) surgery were enrolled.
Background: Blood proteins are frequently measured in serum or plasma, because they provide a wealth of information. Differences in the ex vivo processing of serum and plasma raise concerns that proteomic health and disease signatures derived from serum or plasma differ in content and quality. However, little is known about their respective power to predict feto-maternal health outcomes.
View Article and Find Full Text PDFPreterm birth (PTB) is the leading cause of death in children under five, yet comprehensive studies are hindered by its multiple complex etiologies. Epidemiological associations between PTB and maternal characteristics have been previously described. This work used multiomic profiling and multivariate modeling to investigate the biological signatures of these characteristics.
View Article and Find Full Text PDFThe prevalence of food allergy continues to rise globally, carrying with it substantial safety, economic, and emotional burdens. Although preventative strategies do exist, the heterogeneity of allergy trajectories and clinical phenotypes has made it difficult to identify patients who would benefit from these strategies. Therefore, further studies investigating the molecular mechanisms that differentiate these trajectories are needed.
View Article and Find Full Text PDFHigh-content omic technologies coupled with sparsity-promoting regularization methods (SRM) have transformed the biomarker discovery process. However, the translation of computational results into a clinical use-case scenario remains challenging. A rate-limiting step is the rigorous selection of reliable biomarker candidates among a host of biological features included in multivariate models.
View Article and Find Full Text PDFAlthough prematurity is the single largest cause of death in children under 5 years of age, the current definition of prematurity, based on gestational age, lacks the precision needed for guiding care decisions. Here, we propose a longitudinal risk assessment for adverse neonatal outcomes in newborns based on a deep learning model that uses electronic health records (EHRs) to predict a wide range of outcomes over a period starting shortly before conception and ending months after birth. By linking the EHRs of the Lucile Packard Children's Hospital and the Stanford Healthcare Adult Hospital, we developed a cohort of 22,104 mother-newborn dyads delivered between 2014 and 2018.
View Article and Find Full Text PDFUnlabelled: Psychosocial and stress-related factors (PSFs), defined as internal or external stimuli that induce biological changes, are potentially modifiable factors and accessible targets for interventions that are associated with adverse pregnancy outcomes (APOs). Although individual APOs have been shown to be connected to PSFs, they are biologically interconnected, relatively infrequent, and therefore challenging to model. In this context, multi-task machine learning (MML) is an ideal tool for exploring the interconnectedness of APOs on the one hand and building on joint combinatorial outcomes to increase predictive power on the other hand.
View Article and Find Full Text PDFTechnologies for single-cell profiling of the immune system have enabled researchers to extract rich interconnected networks of cellular abundance, phenotypical and functional cellular parameters. These studies can power machine learning approaches to understand the role of the immune system in various diseases. However, the performance of these approaches and the generalizability of the findings have been hindered by limited cohort sizes in translational studies, partially due to logistical demands and costs associated with longitudinal data collection in sufficiently large patient cohorts.
View Article and Find Full Text PDFIntroduction: Current treatments for chronic musculoskeletal (MSK) pain are suboptimal. Discovery of robust prognostic markers separating patients who recover from patients with persistent pain and disability is critical for developing patient-specific treatment strategies and conceiving novel approaches that benefit all patients. Given that chronic pain is a biopsychosocial process, this study aims to discover and validate a robust prognostic signature that measures across multiple dimensions in the same adolescent patient cohort with a computational analysis pipeline.
View Article and Find Full Text PDFWhereas prematurity is a major cause of neonatal mortality, morbidity, and lifelong impairment, the degree of prematurity is usually defined by the gestational age (GA) at delivery rather than by neonatal morbidity. Here we propose a multi-task deep neural network model that simultaneously predicts twelve neonatal morbidities, as the basis for a new data-driven approach to define prematurity. Maternal demographics, medical history, obstetrical complications, and prenatal fetal findings were obtained from linked birth certificates and maternal/infant hospitalization records for 11,594,786 livebirths in California from 1991 to 2012.
View Article and Find Full Text PDFUnderstanding the role of stress in pregnancy and its consequences is important, particularly given documented associations between maternal stress and preterm birth and other pathological outcomes. Physical and psychological stressors can elicit the same biological responses, known as biological strain. Chronic stressors, like poverty and racism (race-based discriminatory treatment), may create a legacy or trajectory of biological strain that no amount of coping can relieve in the absence of larger-scale socio-behavioral or societal changes.
View Article and Find Full Text PDF