FLASH radiotherapy employs ultra-high dose rates of >40 Gy/s, which may reduce normal tissue complication as compared to conventional dose rate treatments, while still ensuring the same level of tumour control. The potential benefit this can offer to patients has been the cause of great interest within the radiation oncology community, but this has not translated to a direct understanding of the FLASH effect. The oxygen depletion and inter-track interaction hypotheses are currently the leading explanations as to the mechanisms behind FLASH, but these are still not well understood, with many questions remaining about the exact underpinnings of FLASH and the treatment parameters required to optimally induce it.
View Article and Find Full Text PDFJ Med Imaging Radiat Oncol
December 2011
To develop and assess a method of palliative radiotherapy utilising a kilovoltage imaging system incorporated with a linear accelerator. The conventionally separate procedures of simulation, planning and treatment were merged into a single appointment on a linear accelerator. The process was tested using a humanoid phantom and hypothetical treatment scenarios.
View Article and Find Full Text PDF