The environment in which an animal is situated can have a profound impact on its health, welfare, and productivity. This phenomenon is particularly evident in the case of dairy cattle, then, in order to quantify the impact of ambient temperature (°C) and the relative humidity (%) on dairy cattle, the temperature-humidity index (THI) is employed as a metric. This indicator enables the practical estimation of the stress imposed on cattle by ambient temperature and humidity.
View Article and Find Full Text PDFLeg torsion and distal asymmetry (LTDA) among cows reared on intensive farms in the Comarca Lagunera region of northern Mexico may be indicative of underlying health concerns. To ascertain whether the incidence of LTDA is associated with trough measurements and with productive, reproductive, and disease variables, the prevalence of LTDA was determined in lactating dairy cows. The data were derived from two intensive dairy farms in northern Mexico (G60: 2043 cows in 13 pens with 142.
View Article and Find Full Text PDFThe possible effect of heat stress (HS), measured with the temperature-humidity index (THI) across seasons of the year (SY) upon milk production (MP), feed-to-milk efficiency (FME), and cow comfort (CC) was assessed in Holstein-Friesian cows in northern-arid Mexico. Data from 2467 cows (2146 milking and 321 dry) were recorded across SY [spring (SP), summer (SM), autumn (AT), and winter (WN)] between 2016 and 2019 in an intensive dairy farm located in the Comarca Lagunera (25° NL) with large fluctuations regarding ambient temperature and solar radiation. The THI was stratified into four classes: non-HS, <68; light HS, 68-71; moderate HS, 72-76; and intense HS, ≥77.
View Article and Find Full Text PDF