Myeloid cell leukemia 1 (Mcl-1) is a key regulator of the intrinsic apoptosis pathway. Overexpression of Mcl-1 is correlated with high tumor grade, poor survival, and both intrinsic and acquired resistance to cancer therapies. Herein, we disclose the structure-guided design of a small molecule Mcl-1 inhibitor, compound , that binds to Mcl-1 with subnanomolar affinity, inhibits growth in cell culture assays, and possesses low clearance in mouse and dog pharmacokinetic (PK) experiments.
View Article and Find Full Text PDFSmall molecule IAP antagonists - SMAC mimetics (SM) - are being developed as an anticancer therapy. SM therapy was demonstrated not only to sensitize tumor cells to TNFα-mediated cell death but also to exert immunostimulatory properties. Their good safety and tolerability profile, plus promising preclinical data, warrants further investigation into their various effects within the tumor microenvironment.
View Article and Find Full Text PDFVascular endothelial growth factor (VEGF) and angiopoietin (ANG)-2 have complementary roles in angiogenesis and promote an immunosuppressive tumor microenvironment. It is anticipated that the combination of VEGF and ANG2 blockade could provide superior activity to the blockade of either pathway alone and that the addition of VEGF/ANG2 inhibition to an anti-programmed cell death protein-1 (PD-1) antibody could change the tumor microenvironment to support T-cell-mediated tumor cytotoxicity. Here, we describe the pharmacologic and antitumor activity of BI 836880, a humanized bispecific nanobody comprising two single-variable domains blocking VEGF and ANG2, and an additional module for half-life extension in vivo.
View Article and Find Full Text PDFCancer therapies based on in vivo stimulation, or on adoptive T cell transfer of Vγ9Vδ2 T cells, have been tested in the past decades but have failed to provide consistent clinical efficacy. New, promising concepts such as γδ Chimeric Antigen Receptor (CAR) -T cells and γδ T-cell engagers are currently under preclinical evaluation. Since the impact of factors, such as the relatively low abundance of γδ T cells within tumor tissue is still under investigation, it remains to be shown whether these effector T cells can provide significant efficacy against solid tumors.
View Article and Find Full Text PDFBlood vessels are fundamental to animal life and have critical roles in many diseases, such as stroke, myocardial infarction and diabetes. The vasculature is formed by endothelial cells that line the vessel and are covered with mural cells, specifically pericytes in smaller vessels and vascular smooth muscle cells (vSMCs) in larger-diameter vessels. Both endothelial cells and mural cells are essential for proper blood vessel function and can be derived from human pluripotent stem cells (hPSCs).
View Article and Find Full Text PDFAn Amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFThe transcriptional repression of alternative lineage genes is critical for cell fate commitment. Mechanisms by which locus-specific gene silencing is initiated and heritably maintained during cell division are not clearly understood. To study the maintenance of silent gene states, we investigated how the gene is stably repressed in CD8 T cells.
View Article and Find Full Text PDFThe increasing prevalence of diabetes has resulted in a global epidemic. Diabetes is a major cause of blindness, kidney failure, heart attacks, stroke and amputation of lower limbs. These are often caused by changes in blood vessels, such as the expansion of the basement membrane and a loss of vascular cells.
View Article and Find Full Text PDFGenetic regulators and environmental stimuli modulate T cell activation in autoimmunity and cancer. The enzyme co-factor tetrahydrobiopterin (BH4) is involved in the production of monoamine neurotransmitters, the generation of nitric oxide, and pain. Here we uncover a link between these processes, identifying a fundamental role for BH4 in T cell biology.
View Article and Find Full Text PDFMLL-fusions represent a large group of leukemia drivers, whose diversity originates from the vast molecular heterogeneity of C-terminal fusion partners of MLL. While studies of selected MLL-fusions have revealed critical molecular pathways, unifying mechanisms across all MLL-fusions remain poorly understood. We present the first comprehensive survey of protein-protein interactions of seven distantly related MLL-fusion proteins.
View Article and Find Full Text PDFPooled CRISPR screens are a powerful tool for assessments of gene function. However, conventional analysis is based exclusively on the relative abundance of integrated single guide RNAs (sgRNAs) between populations, which does not discern distinct phenotypes and editing outcomes generated by identical sgRNAs. Here we present CRISPR-UMI, a single-cell lineage-tracing methodology for pooled screening to account for cell heterogeneity.
View Article and Find Full Text PDFDuring development in the thymus, each T lymphocyte is equipped with one, essentially unique, T cell receptor (TCR)-specificity. Due to its random nature, this process inevitably also leads to the emergence of potentially dangerous T lymphocytes that may recognize 'self.' Nevertheless, autoimmune tissue destruction, the cause of diseases such as multiple sclerosis and diabetes, is the exception rather than the rule.
View Article and Find Full Text PDFMacroautophagy serves cellular housekeeping and metabolic functions through delivery of cytoplasmic constituents for lysosomal degradation. In addition, it may mediate the unconventional presentation of intracellular antigens to CD4(+) T cells; however, the physiological relevance of this endogenous MHC class II loading pathway remains poorly defined. Here, we characterize the role of macroautophagy in thymic epithelial cells (TECs) for negative selection.
View Article and Find Full Text PDFThe substitution of one amino acid in the Roquin protein by the sanroque mutation induces a dramatic autoimmune syndrome in mice. This is believed to occur through ectopic expression of inducible T cell co-stimulator (ICOS) and unrestrained differentiation of follicular T helper cells, which induce spontaneous germinal center reactions to self-antigens. In this study, we demonstrate that tissue-specific ablation of Roquin in T or B cells, in the entire hematopoietic system, or in epithelial cells of transplanted thymi did not cause autoimmunity.
View Article and Find Full Text PDFPromiscuous expression of 'peripheral' tissue-restricted antigens (TRAs) by medullary thymic epithelial cells (mTECs) is essential for central tolerance. Remarkably, the expression of individual TRAs varies among mTECs and is confined to a perplexingly small number of cells. To reconcile this with the ensuing robust state of tolerance, one might envisage that mTECs serve primarily as an antigen reservoir, whereas tolerogenic recognition of TRAs would ultimately require antigen uptake and presentation by dendritic cells (DCs).
View Article and Find Full Text PDFThymic epithelial cells (TECs) provide a highly specialized microenvironment for the generation of a functional and self-tolerant T cell repertoire. Much of our current view of TEC biology is derived from gain- or loss-of-function approaches, which have significantly contributed to our understanding of gene function in TEC development and T cell repertoire selection. Here, we will review transgenic and viral strategies that have been used to manipulate gene expression in TECs, highlight some of the shortcomings of particular currently available tools and provide a brief outline of our own attempts to more rapidly and/or more specifically assess gene function in TECs.
View Article and Find Full Text PDFMedullary thymic epithelial cells (mTECs) serve an essential function in central tolerance by expressing peripheral-tissue antigens. These antigens may be transferred to and presented by dendritic cells (DCs). Therefore, it is unclear whether mTECs, in addition to being an antigen reservoir, also serve a mandatory function as antigen-presenting cells.
View Article and Find Full Text PDFFunctional and biochemical assays indicate a substantial contribution of intracellularly derived peptides to the MHC class II 'ligandome'. Macroautophagy, a process traditionally known for its role in cellular housekeeping and adaptation to nutrient withdrawal, is an attractive candidate pathway for endogenous MHC class II loading. Work in cell culture systems, including antigen presentation assays, co-localization studies and sequencing of MHC class II bound peptides, demonstrates that substrates of autophagy can be loaded onto MHC class II.
View Article and Find Full Text PDFDuring intrathymic generation of the T cell repertoire, a series of selection processes ensures that only self-MHC (Major Histocompatibility Complex) restricted and self-tolerant T cells are allowed to survive. Interactions with MHC ligands on the surface of thymic epithelial cells (TECs) play a pivotal role in the decision-making of developing thymocytes. A number of distinct cell-biological features of TECs have emerged that may predispose them to serve non-redundant functions in thymocyte "education".
View Article and Find Full Text PDFDuring T cell development in the thymus, scanning of peptide/major histocompatibility (MHC) molecule complexes on the surface of thymic epithelial cells ensures that only useful (self-MHC restricted) and harmless (self-tolerant) thymocytes survive. In recent years, a number of distinct cell-biological features of thymic epithelial cells have been unraveled that may have evolved to render these cells particularly suited for T cell selection, e.g.
View Article and Find Full Text PDFRecognition of self-antigen-derived epitopes presented by major histocompatibility complex class II (MHC II) molecules on thymic epithelial cells (TECs) is critical for the generation of a functional and self-tolerant CD4 T-cell repertoire. Whereas haematopoietic antigen-presenting cells generate MHC-II-peptide complexes predominantly through the processing of endocytosed polypeptides, it remains unknown if and how TECs use unconventional pathways of antigen presentation. Here we address the role of macroautophagy, a process that has recently been shown to allow for endogenous MHC II loading, in T-cell repertoire selection in the mouse thymus.
View Article and Find Full Text PDF