Circumferential scanning in endoscopic imaging is crucial across various disciplines, and optical coherence tomography (OCT) is often the preferred choice due to its high-speed, high-resolution, and micron-scale imaging capabilities. Moreover, real-time and high-speed 3D endoscopy is a pivotal technology for medical screening and precise surgical guidance, among other applications. However, challenges such as image jitter and non-uniform rotational distortion (NURD) are persistent obstacles that hinder real-time visualization during high-speed OCT procedures.
View Article and Find Full Text PDFIn the imaging of airway tissue, optical coherence tomography (OCT) provides cross-sectional images of tissue structures, shows cilia movement and mucus secretion, but does not provide sufficient contrast to differentiate individual cells. By using fast sequences of microscopic resolution OCT (mOCT) images, OCT can use small signal fluctuations to overcome lack in contrast and speckle noise. In this way, OCT visualizes airway morphology on a cellular level and allows the tracking of the dynamic behavior of immune cells, as well as mucus transport and secretion.
View Article and Find Full Text PDFPurpose: Microscopic optical coherence tomography (mOCT) has an imaging resolution of 1 µm in all voxel dimensions, but individual epithelial cells are difficult to resolve due to lack of scattering contrast. Adding dynamic contrast processing to mOCT (dmOCT) results in color images that enable visualization of individual cells and possibly give information on cellular function via the calculation of a motility coefficient. We propose this technique as a novel method of evaluating the ocular surface after exposure to a toxic chemical, benzalkonium chloride (BAK).
View Article and Find Full Text PDFVolumetric imaging of dynamic processes with microscopic resolution holds a huge potential in biomedical research and clinical diagnosis. Using supercontinuum light sources and high numerical aperture (NA) objectives, optical coherence tomography (OCT) achieves microscopic resolution and is well suited for imaging cellular and subcellular structures of biological tissues. Currently, the imaging speed of microscopic OCT (mOCT) is limited by the line-scan rate of the spectrometer camera and ranges from 30 to 250 kHz.
View Article and Find Full Text PDFCaries, the world's most common chronic disease, remains a major cause of invasive restorative dental treatment. To take advantage of the diagnostic potential of optical coherence tomography (OCT) in contemporary dental prevention and treatment, an intraorally applicable spectral-domain OCT probe has been developed based on an OCT hand-held scanner equipped with a rigid 90°-optics endoscope. The probe was verified in vitro.
View Article and Find Full Text PDFWhile optical coherence tomography (OCT) provides a resolution down to 1 µm, it has difficulties in visualizing cellular structures due to a lack of scattering contrast. By evaluating signal fluctuations, a significant contrast enhancement was demonstrated using time-domain full-field OCT (FF-OCT), which makes cellular and subcellular structures visible. The putative cause of the dynamic OCT signal is the site-dependent active motion of cellular structures in a sub-micrometer range, which provides histology-like contrast.
View Article and Find Full Text PDFWe present a forward-viewing fiber scanning endoscope (FSE) for high-speed volumetric optical coherence tomography (OCT). The reduction in size of the probe was achieved by substituting the focusing optics by an all-fiber-based imaging system which consists of a combination of scanning single-mode fibers, a glass spacer, made from a step-index multi-mode fiber, and a gradient-index fiber. A lateral resolution of 11 μm was achieved at a working distance of 1.
View Article and Find Full Text PDFIntravital microscopy (IVM) offers the opportunity to visualize static and dynamic changes of tissue on a cellular level. It is a valuable tool in research and may considerably improve clinical diagnosis. In contrast to confocal and non-linear microscopy, optical coherence tomography (OCT) with microscopic resolution (mOCT) provides intrinsically cross-sectional imaging.
View Article and Find Full Text PDFAn increasing number of microfluidic systems operate at flow rates below 1 μl/min. Applications include (implanted) micropumps for drug delivery, liquid chromatography, and microreactors. For the applications where the absolute accuracy is important, a proper calibration is required.
View Article and Find Full Text PDFThis work presents the improvements of an experimental setup for measuring ultra-low flow rates down to 5 nl/min. The system uses a telecentric CCD imaging system mounted on a high-precision, computer-controlled linear stage to track a moving liquid meniscus inside a glass capillary. Compared to the original setup, the lowest attainable expanded uncertainty at any flow rate has been reduced from 5.
View Article and Find Full Text PDFA new ternary ruthenium oxide Na(2)RuO(4) was prepared and shown to crystallize with a new structure type. Single crystal X-ray diffraction measurements reveal that Na(2)RuO(4) consists of RuO(4) chains made up of RuO(5) trigonal bipyramids by sharing axial corners. Na(2)RuO(4) is a magnetic semiconductor with a variable range hopping behavior, and its molar magnetic susceptibility chi(mol) has a broad maximum at approximately 74 K.
View Article and Find Full Text PDF