Publications by authors named "Martin Adrover"

Dopamine (DA) signals in the striatum are critical for a variety of vital processes, including motivation, motor learning, and reinforcement learning. Striatal DA signals can be evoked by direct activation of inputs from midbrain DA neurons (DANs) as well as cortical and thalamic inputs to the striatum. In this study, we show that optogenetic stimulation of prelimbic (PrL) and infralimbic (IL) cortical afferents to the striatum triggers an increase in extracellular DA concentration, which coincides with elevation of striatal acetylcholine (ACh) levels.

View Article and Find Full Text PDF

Fyn kinase in the dorsomedial striatum (DMS) of rodents plays a central role in mechanisms underlying excessive alcohol intake. The DMS is comprised of medium spiny neurons (MSNs) that project directly (dMSNs) or indirectly (iMSNs) to the substantia nigra. Here, we examined the cell-type specificity of Fyn's actions in alcohol use.

View Article and Find Full Text PDF

Nucleus accumbens (NAc) shell shows unique dopamine (DA) signals and plays a unique role in DA-dependent behaviors such as reward-motivated learning and the response to drugs of abuse. A disynaptic mechanism for DA release was reported and shown to require synchronized firing of cholinergic interneurons (CINs) and activation of nicotinic acetylcholine (ACh) receptors (nAChRs) in DA neuron (DAN) axons. The properties of this disynaptic mechanism of DA transmission are not well understood in the NAc shell.

View Article and Find Full Text PDF

The mammalian target of rapamycin complex 1 (mTORC1), a transducer of local dendritic translation, participates in learning and memory processes as well as in mechanisms underlying alcohol-drinking behaviors. Using an unbiased RNA-seq approach, we identified Prosapip1 as a novel downstream target of mTORC1 whose translation and consequent synaptic protein expression are increased in the nucleus accumbens (NAc) of mice excessively consuming alcohol. We demonstrate that alcohol-dependent increases in Prosapip1 levels promote the formation of actin filaments, leading to changes in dendritic spine morphology of NAc medium spiny neurons (MSNs).

View Article and Find Full Text PDF

Cholinergic transmission in the striatum functions as a key modulator of dopamine (DA) transmission and synaptic plasticity, both of which are required for reward and motor learning. Acetylcholine (ACh) can elicit striatal DA release through activation of nicotinic ACh receptors (nAChRs) on DA axonal projections. However, it remains controversial how muscarinic ACh receptors (mAChRs) modulate striatal DA release, with studies reporting both potentiation and depression of striatal DA transmission by mAChR agonists.

View Article and Find Full Text PDF

A prominent aspect of drug addiction is the ability of drug-associated cues to elicit craving and facilitate relapse. Understanding the factors that regulate cue reactivity will be vital for improving treatment of addictive disorders. Low availability of dopamine (DA) D2 receptors (D2Rs) in the striatum is associated with high cocaine intake and compulsive use.

View Article and Find Full Text PDF

Synaptic transmission between ventral tegmental area and nucleus accumbens (NAc) is critically involved in reward-motivated behaviors and thought to be altered in addiction. In addition to dopamine (DA), glutamate is packaged and released by a subset of mesolimbic DA neurons, eliciting EPSCs onto medium spiny neurons in NAc. Little is known about the properties and modulation of glutamate release from DA midbrain terminals and the effect of cocaine.

View Article and Find Full Text PDF

A hallmark of addiction is the loss of control over drug intake, which is seen in only a fraction of those exposed to stimulant drugs such as cocaine. The cellular mechanisms underlying vulnerability or resistance to compulsive drug use remain unknown. We found that individual variability in the development of highly motivated and perseverative behavior toward cocaine is associated with synaptic plasticity in medium spiny neurons expressing dopamine D2 receptors (D2-MSNs) in the nucleus accumbens (NAc) of mice.

View Article and Find Full Text PDF

Soluble amyloid-β peptide (Aβ) oligomers, known to accumulate in Alzheimer's disease brains, target excitatory post-synaptic terminals. This is thought to trigger synapse deterioration, a mechanism possibly underlying memory loss in early stage Alzheimer's disease. A major unknown is the identity of the receptor(s) targeted by oligomers at synapses.

View Article and Find Full Text PDF

MT1 and MT2, polypeptides from green mamba venom, known to bind to muscarinic cholinoceptors, behave like muscarinic agonists in an inhibitory avoidance task in rats. We have further characterised their functional effects using different preparations. MT1 and MT2 behaved like relatively selective muscarinic M1 receptor agonists in rabbit vas deferens, but their effects were not reversed by washing or prevented by muscarinic antagonists, although allosteric modulators altered responses to MT1.

View Article and Find Full Text PDF