Background And Purpose: Stress is known to reduce food intake. Many aspects of the stress response and feeding are regulated by the endocannabinoid system, but the roles of anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) in stress-induced anorexia are unclear.
Experimental Approach: Effects of acute restraint stress on endocannabinoids were investigated in male Sprague-Dawley rats.
Background: The ability to effectively cope with stress is a critical determinant of disease susceptibility. The lateral habenula (LHb) and the endocannabinoid (ECB) system have independently been shown to be involved in the selection of stress coping strategies, yet the role of ECB signaling in the LHb remains unknown.
Methods: Using a battery of complementary techniques in rats, we examined the localization of type-1 cannabinoid receptors (CBRs) and assessed the behavioral and neuroendocrine effects of intra-LHb CBR manipulations.
Alcohol dependence is associated with anxiety during withdrawal. The endocannabinoid (ECB) system participates in the neuroendocrine and behavioral response to stress and changes in corticolimbic ECB signaling may contribute to alcohol withdrawal-induced anxiety. Moreover, symptoms of alcohol withdrawal differ between sexes and sexual dimorphism in withdrawal-induced ECB recruitment may be a contributing factor.
View Article and Find Full Text PDFRationale: Drugs that block fatty acid amide hydrolase (FAAH, which elevates anandamide [AEA]) and drugs which block monoacylglycerol (MAGL, which elevates 2-arachidonyl glycerol [2-AG]) have promise in treating both acute and anticipatory nausea in human patients.
Objective: This study aims to evaluate the relative effectiveness of dual MAGL/FAAH inhibition with either alone to reduce acute and anticipatory nausea in rat models.
Materials And Methods: AM4302, a new dual MAGL/FAAH inhibitor, was compared with a new selective MAGL inhibitor, AM4301, and new selective FAAH inhibitor, AM4303, for their potential to reduce acute nausea (gaping in taste reactivity) and anticipatory nausea (contextually elicited conditioned gaping) in two rat models.
Chemotherapy-induced nausea is one of the most distressing symptoms reported by patients undergoing treatment, and even with the introduction of newer antiemetics such as ondansetron and aprepitant, nausea remains problematic in the clinic. Indeed, when acute nausea is not properly managed, the cues of the clinic can become associated with this distressing symptom resulting in anticipatory nausea for which no effective treatments are available. Clinical trials exploring the potential of exogenous or endogenous cannabinoids to reduce chemotherapy-induced nausea are sparse; therefore, we must rely on the data from pre-clinical rat models of nausea.
View Article and Find Full Text PDFOne of the first recognized medical uses of Δ(9)-tetrahydrocannabinol was treatment of chemotherapy-induced nausea and vomiting. Although vomiting is well controlled with the currently available non-cannabinoid antiemetics, nausea continues to be a distressing side effect of chemotherapy and other disorders. Indeed, when nausea becomes conditionally elicited by the cues associated with chemotherapy treatment, known as anticipatory nausea (AN), currently available antiemetics are largely ineffective.
View Article and Find Full Text PDFCannabinoid (CB) agonists suppress nausea in humans and animal models; yet, their underlying neural substrates remain largely unknown. Evidence suggests that the visceral insular cortex (VIC) plays a critical role in nausea. Given the expression of CB1 receptors and the presence of endocannabinoids in this brain region, we hypothesized that the VIC endocannabinoid system regulates nausea.
View Article and Find Full Text PDFCannabinoids disrupt learning and memory in human and nonhuman participants. Object recognition memory, which is particularly susceptible to the impairing effects of cannabinoids, relies critically on the perirhinal cortex (PRh); however, to date, the effects of cannabinoids within PRh have not been assessed. In the present study, we evaluated the effects of localized administration of the synthetic cannabinoid, HU210 (0.
View Article and Find Full Text PDFConditioned gaping occurs through a classically conditioned association between a flavor or a context (CS) and an unconditioned stimulus (US) that produces nausea, such as lithium chloride (LiCl; US). Rats display conditioned gaping to a flavor or context previously associated with nausea; thus, our aim was to investigate whether rats acquire second-order conditioning to a flavor experienced in a nausea-paired context. In Experiment 1, rats were assigned to one of three groups, based upon the contingency of the first order pairing (CS1 context and LiCl) and the contingency of the second-order pairing (CS2 saccharin CS1 context) including: Group Paired/Paired (P/P), Group Paired/Unpaired (P/U) and Group Unpaired/Paired (U/P).
View Article and Find Full Text PDFRationale: To determine the role of the endocannabinoid, 2-arachodonyl glycerol (2-AG), in the regulation of nausea and vomiting.
Objective: We evaluated the effectiveness of the potent selective monoacylglycerol lipase (MAGL) inhibitor, MJN110, which selectively elevates the endocannabinoid 2-AG, to suppress acute nausea and vomiting, as well as anticipatory nausea in rat and shrew models.
Methods: The rat gaping models were used to evaluate the potential of MJN110 (5, 10, and 20 mg/kg, intraperitoneally [IP]) to suppress acute nausea produced by LiCl and of MJN110 (10 and 20 mg/kg, IP) to suppress anticipatory nausea elicited by a LiCl-paired context.
Cannabinoid agonists typically impair memory, whereas CB1 receptor antagonists enhance memory performance under specific conditions. The insular cortex has been implicated in object memory consolidation. Here we show that infusions of the CB1 receptor antagonist SR141716 enhances long-term object recognition memory in rats in a dose-dependent manner (facilitation with 1.
View Article and Find Full Text PDFRationale: The effectiveness of cannabidiolic acid (CBDA) was compared with other potential treatments for anticipatory nausea (AN), using a rat model of contextually elicited conditioned gaping reactions.
Objective: The potential of ondansetron (OND), Δ(9)-tetrahydrocannabinol (THC), chlordiazepoxide (CDP), CBDA, and co-administration of CBDA and tetrahydrocannabinolic acid (THCA) to reduce AN and modify locomotor activity was evaluated.
Materials And Methods: Following four pairings of a novel context with lithium chloride (LiCl), the rats were given a test for AN.
Background And Purpose: The cannabinoid 1 (CB1 ) receptor inverse agonists/antagonists, rimonabant (SR141716, SR) and AM251, produce nausea and potentiate toxin-induced nausea by inverse agonism (rather than antagonism) of the CB1 receptor. Here, we evaluated two phytocannabinoids, cannabidivarin (CBDV) and Δ(9) -tetrahydrocannabivarin (THCV), for their ability to produce these behavioural effect characteristics of CB1 receptor inverse agonism in rats.
Experimental Approach: In experiment 1, we investigated the potential of THCV and CBDV to produce conditioned gaping (measure of nausea-induced behaviour) in the same manner as SR and AM251.
Background And Purpose: To evaluate the role of 2-arachidonoyl glycerol (2AG) in the regulation of nausea and vomiting using animal models of vomiting and of nausea-like behaviour (conditioned gaping).
Experimental Approach: Vomiting was assessed in shrews (Suncus murinus), pretreated with JZL184, a selective monoacylglycerol lipase (MAGL) inhibitor which elevates endogenous 2AG levels, 1 h before administering the emetogenic compound, LiCl. Regulation of nausea-like behaviour in rats by exogenous 2AG or its metabolite arachidonic acid (AA) was assessed, using the conditioned gaping model.