Publications by authors named "Martin A Crimp"

Article Synopsis
  • * A promising alternative is a 3D porous scaffold made with fused filament fabrication (FFF) technology combined with silver-doped bioactive glass-ceramic particles, which shows potential for helping bone regeneration and has antibacterial properties.
  • * The study evaluates the mechanical strength and antibacterial effectiveness of these scaffolds through various tests, demonstrating they are not only strong but also support cell growth, making them a viable solution for bone repair.
View Article and Find Full Text PDF

In this work, the relative capabilities and limitations of electron channeling contrast imaging (ECCI) and cross-correlation electron backscattered diffraction (CC-EBSD) have been assessed by studying the dislocation distributions resulting from nanoindentation in body centered cubic Ta. Qualitative comparison reveals very similar dislocation distributions between the CC-EBSD mapped GNDs and the ECC imaged dislocations. Approximate dislocation densities determined from ECC images compare well to those determined by CC-EBSD.

View Article and Find Full Text PDF

Long beta-Ga2O3 crystalline nanowires are synthesized on patterned silicon substrates using chemical vapor deposition technique. Advanced electron microscopy indicates that the as-grown beta-Ga2O3 nanowires are consisted of poly-crystalline (Co, Ga)O tips and straight crystalline beta-Ga2O3 stems. The catalytic cobalt not only locates at the nanowire tips but diffuses into beta-Ga2O3 nanowire stems several ten nanometers.

View Article and Find Full Text PDF

Gallium nitride nanowires and rods synthesized by a catalyst-free vapor-solid growth method were analyzed with cross section high-resolution transmission electron microscopy. The cross section studies revealed hollow core screw dislocations, or nanopipes, in the nanowires and rods. The hollow cores were located at or near the center of the nanowires and rods, along the axis of a screw dislocation.

View Article and Find Full Text PDF

We report a new biphasic crystalline wurtzite/zinc-blende homostructure in gallium nitride nanowires. Cathodoluminescence was used to quantitatively measure the wurtzite and zinc-blende band gaps. High-resolution transmission electron microscopy was used to identify distinct wurtzite and zinc-blende crystalline phases within single nanowires through the use of selected area electron diffraction, electron dispersive spectroscopy, electron energy loss spectroscopy, and fast Fourier transform techniques.

View Article and Find Full Text PDF

The imaging and characterization of dislocations is commonly carried out by thin foil transmission electron microscopy (TEM) using diffraction contrast imaging. However, the thin foil approach is limited by difficult sample preparation, thin foil artifacts, relatively small viewable areas, and constraints on carrying out in situ studies. Electron channeling imaging of electron channeling contrast imaging (ECCI) offers an alternative approach for imaging crystalline defects, including dislocations.

View Article and Find Full Text PDF