Background And Objective: Premature skin ageing, and skin hyperpigmentation are influenced by exogenous factors, such as ultraviolet radiation and blue light. In this study, we assess the protective effect of a sunscreen (TDF Blu Voile Sunscreen) in protecting the skin against the harmful effects of blue light irradiation in vivo and through the in situ quantitative and qualitative evaluation of protein carbonylation in human skin explants.
Methodology: The protective effect of the test product against blue light was first evaluated ex vivo on human skin explants.
Background: Increased protein carbonylation is a hallmark of oxidative stress, protein homeostasis dysregulation and aging in the nervous system and skin. Sensory neurons interact with skin cells and are involved in skin homeostasis. We have previously reported that the 5-octanoyl salicylic acid (C8-SA), a salicylic acid derivative, increased C.
View Article and Find Full Text PDFAccumulation of oxidatively modified proteins is a hallmark of organismal aging in vivo and of cellular replicative senescence in vitro. Failure of protein maintenance is a major contributor to the age-associated accumulation of damaged proteins that is believed to participate to the age-related decline in cellular function. In this context, quantitative proteomics approaches, including 2-D gel electrophoresis (2-DE)-based methods, represent powerful tools for monitoring the extent of protein oxidative modifications at the proteome level and for identifying the targeted proteins, also referred as to the "oxi-proteome.
View Article and Find Full Text PDFAs a consequence of impaired glucose or fatty acid metabolism, bioenergetic stress in skeletal muscles may trigger myopathy and rhabdomyolysis. Genetic mutations causing loss of function of the LPIN1 gene frequently lead to severe rhabdomyolysis bouts in children, though the metabolic alterations and possible therapeutic interventions remain elusive. Here, we show that lipin1 deficiency in mouse skeletal muscles is sufficient to trigger myopathy.
View Article and Find Full Text PDFAccumulation of oxidatively damaged proteins is a hallmark of cellular and organismal ageing, and is also a phenotypic feature shared by both replicative senescence and stress-induced premature senescence of human fibroblasts. Moreover, proteins that are building up as oxidized (i.e.
View Article and Find Full Text PDFAccumulation of oxidized proteins is a hallmark of cellular and organismal aging. Adult muscle stem cell (or satellite cell) replication and differentiation is compromised with age contributing to sarcopenia. However, the molecular events related to satellite cell dysfunction during aging are not completely understood.
View Article and Find Full Text PDFSarcopenia corresponds to the degenerative loss of skeletal muscle mass, quality, and strength associated with ageing and leads to a progressive impairment of mobility and quality of life. However, the cellular and molecular mechanisms involved in this process are not completely understood. A hallmark of cellular and tissular ageing is the accumulation of oxidatively modified (carbonylated) proteins, leading to a decreased quality of the cellular proteome that could directly impact on normal cellular functions.
View Article and Find Full Text PDFThe cellular basis of age-related tissue deterioration remains largely obscure. The ability to activate compensatory mechanisms in response to environmental stress is an important factor for survival and maintenance of cellular functions. Autophagy is activated both under short and prolonged stress and is required to clear the cell of dysfunctional organelles and altered proteins.
View Article and Find Full Text PDFBackground: The impact of overweight among men of reproductive-age may affect fertility. Abdominal fat, more than body mass index, is an indicator of higher metabolic risk, which seems to be involved in decreasing sperm quality. This study aims to assess the relationship between abdominal fat and sperm DNA fragmentation and the effect of abdominal fat loss, among 6 men in subfertile couples.
View Article and Find Full Text PDFAging is accompanied by the gradual deterioration of cell functions. Particularly, mitochondrial dysfunction, associated with an accumulation of damaged proteins, is of key importance due to the central role of these organelles in cellular metabolism. However, the detailed molecular mechanisms involved in such impairment have not been completely elucidated.
View Article and Find Full Text PDFUnlabelled: Increased protein carbonyl content is a hallmark of cellular and organismal aging. Protein damage leading to the formation of carbonyl groups derives from direct oxidation of several amino acid side chains but can also derive through protein adducts formation with lipid peroxidation products and dicarbonyl glycating compounds. All these modifications have been implicated during oxidative stress, aging and age-related diseases.
View Article and Find Full Text PDFSkeletal muscle ageing is characterized by a progressive and dramatic loss of muscle mass and strength leading to decreased muscular function resulting in muscle weakness which is often referred to as sarcopenia. Following the standardisation of "omics" approaches to study the genome (genomics) and the transcriptome (transcriptomics), the study of the proteins encoded by the genome, referred to as proteomics, is a tremendous challenge. Unlike the genome, the proteome varies in response to many physiological or pathological factors.
View Article and Find Full Text PDFOxidatively modified proteins build-up with age results, at least in part, from the increase of reactive oxygen species and other toxic compounds originating from both cellular metabolism and external factors. Experimental evidence has also indicated that failure of protein maintenance is a major contributor to the age-associated accumulation of damaged proteins. We have previously shown that oxidized proteins as well as proteins modified by lipid peroxidation and glycoxidation adducts are accumulating in senescent human WI-38 fibroblasts and reported that proteins targeted by these modifications are mainly involved in protein maintenance, energy metabolism and cytoskeleton.
View Article and Find Full Text PDFProtein damage mediated by oxidation, protein adducts formation with advanced glycated end products and with products of lipid peroxidation, has been implicated during aging and age-related diseases, such as neurodegenerative diseases. Increased protein modification has also been described upon replicative senescence of human fibroblasts, a valid model for studying aging in vitro. However, the mechanisms by which these modified proteins could impact on the development of the senescent phenotype and the pathogenesis of age-related diseases remain elusive.
View Article and Find Full Text PDFAccumulation of oxidized and damaged proteins is a hallmark of the aging process in different organs and tissues. Intracellular protein degradation is normally the most efficient mechanism to prevent toxicity associated with the accumulation of altered proteins without affecting the cellular reserves of amino acids. Protein degradation by the proteasomal system is a key process for the maintenance of cellular protein homeostasis and has come into the focus of aging research during the last decade.
View Article and Find Full Text PDFIntracellular inclusion bodies (IBs) containing ferritin and iron are hallmarks of hereditary ferritinopathy (HF). This neurodegenerative disease is caused by mutations in the coding sequence of the ferritin light chain (FTL) gene that generate FTL polypeptides with a C-terminus that is altered in amino acid sequence and length. Previous studies of ferritin formed with p.
View Article and Find Full Text PDFGlucose solutions incubated at low oxygen concentration gave rise to the appearance of an absorption band in the UVA-visible region after 10 days. Further characterization evidenced that this band was composed by a single chomophore with maximum absorption bands at 335 and 365 nm. HPLC/MS and UV spectroscopy assays indicated that this product is composed by five unities of furan.
View Article and Find Full Text PDFAlthough increased oxidative stress has been associated with the impairment of proliferation and function of adult human muscle stem cells, proteins either involved in the stress response or damaged by oxidation have not been identified. A parallel proteomics approach was performed for analyzing the protein expression profile as well as proteins preferentially oxidized upon hydrogen peroxide-induced oxidative stress. Fifteen proteins involved in the oxidative stress response were identified.
View Article and Find Full Text PDFTrans-sialidases are surface-located proteins in Trypanosoma cruzi that participate in key parasite-host interactions and parasite virulence. These proteins are encoded by a large multigenic family, with tandem-repeated and individual genes dispersed throughout the genome. While a large number of genes encode for catalytically active enzyme isoforms, many others display mutations that involve catalytic residues.
View Article and Find Full Text PDFHereditary ferritinopathy (HF) is a neurodegenerative disease characterized by intracellular ferritin inclusion bodies (IBs) and iron accumulation throughout the central nervous system. Ferritin IBs are composed of mutant ferritin light chain as well as wild-type light (Wt-FTL) and heavy chain (FTH1) polypeptides. In vitro studies have shown that the mutant light chain polypeptide p.
View Article and Find Full Text PDFOculopharyngeal muscular dystrophy (OPMD) is an adult-onset disorder characterized by ptosis, dysphagia and proximal limb weakness. Autosomal-dominant OPMD is caused by a short (GCG)(8-13) expansions within the first exon of the poly(A)-binding protein nuclear 1 gene (PABPN1), leading to an expanded polyalanine tract in the mutated protein. Expanded PABPN1 forms insoluble aggregates in the nuclei of skeletal muscle fibres.
View Article and Find Full Text PDFMutations in the coding sequence of the ferritin light chain (FTL) gene cause a neurodegenerative disease known as neuroferritinopathy or hereditary ferritinopathy, which is characterized by the presence of intracellular inclusion bodies containing the mutant FTL polypeptide and by abnormal accumulation of iron in the brain. Here, we describe the x-ray crystallographic structure and report functional studies of ferritin homopolymers formed from the mutant FTL polypeptide p.Phe167SerfsX26, which has a C terminus that is altered in amino acid sequence and length.
View Article and Find Full Text PDFInsertional mutations in exon 4 of the ferritin light chain (FTL) gene are associated with hereditary ferritinopathy (HF) or neuroferritinopathy, an autosomal dominant neurodegenerative disease characterized by progressive impairment of motor and cognitive functions. To determine the pathogenic mechanisms by which mutations in FTL lead to neurodegeneration, we investigated iron metabolism and markers of oxidative stress in the brain of transgenic (Tg) mice that express the mutant human FTL498-499InsTC cDNA. Compared with wild-type mice, brain extracts from Tg (FTL-Tg) mice showed an increase in the cytoplasmic levels of both FTL and ferritin heavy chain polypeptides, a decrease in the protein and mRNA levels of transferrin receptor-1, and a significant increase in iron levels.
View Article and Find Full Text PDFNucleotide insertions in the ferritin light chain (FTL) polypeptide gene cause hereditary ferritinopathy, a neurodegenerative disease characterized by abnormal accumulation of ferritin and iron in the central nervous system. Here we describe for the first time the protein structure and iron storage function of the FTL mutant p.Phe167SerfsX26 (MT-FTL), which has a C terminus altered in sequence and extended in length.
View Article and Find Full Text PDFIncreased iron levels and iron-mediated oxidative stress play an important role in the pathogenesis of many neurodegenerative diseases. The finding that mutations in the ferritin light polypeptide (FTL) gene cause a neurodegenerative disease known as neuroferritinopathy or hereditary ferritinopathy (HF) provided a direct connection between abnormal brain iron storage and neurodegeneration. HF is characterized by a severe movement disorder and by the presence of nuclear and cytoplasmic ferritin inclusion bodies in glia and neurons throughout the CNS and in tissues of multiple organ systems.
View Article and Find Full Text PDF