The paper describes the production and evaluation of global grassland extent mapped annually for 2000-2022 at 30 m spatial resolution. The dataset showing the spatiotemporal distribution of cultivated and natural/semi-natural grassland classes was produced by using GLAD Landsat ARD-2 image archive, accompanied by climatic, landform and proximity covariates, spatiotemporal machine learning (per-class Random Forest) and over 2.3 M reference samples (visually interpreted in Very High Resolution imagery).
View Article and Find Full Text PDFProcessing large collections of earth observation (EO) time-series, often petabyte-sized, such as NASA's Landsat and ESA's Sentinel missions, can be computationally prohibitive and costly. Despite their name, even the Analysis Ready Data (ARD) versions of such collections can rarely be used as direct input for modeling because of cloud presence and/or prohibitive storage size. Existing solutions for readily using these data are not openly available, are poor in performance, or lack flexibility.
View Article and Find Full Text PDFThe article describes the production steps and accuracy assessment of an analysis-ready, open-access European data cube consisting of 2000-2020+ Landsat data, 2017-2021+ Sentinel-2 data and a 30 m resolution digital terrain model (DTM). The main purpose of the data cube is to make annual continental-scale spatiotemporal machine learning tasks accessible to a wider user base by providing a spatially and temporally consistent multidimensional feature space. This has required systematic spatiotemporal harmonization, efficient compression, and imputation of missing values.
View Article and Find Full Text PDFA spatiotemporal machine learning framework for automated prediction and analysis of long-term Land Use/Land Cover dynamics is presented. The framework includes: (1) harmonization and preprocessing of spatial and spatiotemporal input datasets (GLAD Landsat, NPP/VIIRS) including five million harmonized LUCAS and CORINE Land Cover-derived training samples, (2) model building based on spatial k-fold cross-validation and hyper-parameter optimization, (3) prediction of the most probable class, class probabilities and model variance of predicted probabilities per pixel, (4) LULC change analysis on time-series of produced maps. The spatiotemporal ensemble model consists of a random forest, gradient boosted tree classifier, and an artificial neural network, with a logistic regressor as meta-learner.
View Article and Find Full Text PDF