Background And Aims: Tropical forests exchange more carbon dioxide (CO2) with the atmosphere than any other terrestrial biome. Yet, uncertainty in the projected carbon balance over the next century is roughly three-times greater for the tropics than other ecosystems. Our limited knowledge of tropical plant physiological responses, including photosynthetic, to climate change is a substantial source of uncertainty in our ability to forecast the global terrestrial carbon sink.
View Article and Find Full Text PDFGlob Chang Biol
October 2024
Leaf respiratory carbon loss decreases independent of temperature as the night progresses. Detailed nighttime measurements needed to quantify cumulative respiratory carbon loss at night are challenging under both lab and field conditions. We provide a simple yet accurate approach to represent variation in nighttime temperature-independent leaf respiratory CO efflux in environments with both stable and fluctuating temperatures, which requires no detailed measurements throughout the night.
View Article and Find Full Text PDFAs temperature rises, net carbon uptake in tropical forests decreases, but the underlying mechanisms are not well understood. High temperatures can limit photosynthesis directly, for example by reducing biochemical capacity, or indirectly through rising vapor pressure deficit (VPD) causing stomatal closure. To explore the independent effects of temperature and VPD on photosynthesis we analyzed photosynthesis data from the upper canopies of two tropical forests in Panama with Generalized Additive Models.
View Article and Find Full Text PDFThe critical temperature beyond which photosynthetic machinery in tropical trees begins to fail averages approximately 46.7 °C (T). However, it remains unclear whether leaf temperatures experienced by tropical vegetation approach this threshold or soon will under climate change.
View Article and Find Full Text PDFPlant water use theory has largely been developed within a plant-performance paradigm that conceptualizes water use in terms of value for carbon gain and that sits within a neoclassical economic framework. This theory works very well in many contexts but does not consider other values of water to plants that could impact their fitness. Here, we survey a range of alternative hypotheses for drivers of water use and stomatal regulation.
View Article and Find Full Text PDFModelling the response of plants to climate change is limited by our incomplete understanding of the component processes of photosynthesis and their temperature responses within and among species. For ≥20 individuals, each of six common subtropical tree species occurring across steep urban thermal gradients in Miami, Florida, USA, we determined rates of net photosynthesis (A ), maximum RuBP carboxylation, maximum RuBP regeneration and stomatal conductance, and modelled the optimum temperature (T ) and process rate of each parameter to address two questions: (1) Do the T of A (T ) and the maximum A (A ) of subtropical trees reflect acclimation to elevated growth temperatures? And (2) What limits A in subtropical trees? Against expectations, we did not find significant acclimation of T , A or the T of any of the underlying photosynthetic parameters to growth temperature in any of the focal species. Model selection for the single best predictor of A both across leaf temperatures and at T revealed that the A of most trees was best predicted by stomatal conductance.
View Article and Find Full Text PDFRising temperatures are influencing forests on many scales, with potentially strong variation vertically across forest strata. Using published research and new analyses, we evaluate how microclimate and leaf temperatures, traits, and gas exchange vary vertically in forests, shaping tree, and ecosystem ecology. In closed-canopy forests, upper canopy leaves are exposed to the highest solar radiation and evaporative demand, which can elevate leaf temperature (T ), particularly when transpirational cooling is curtailed by limited stomatal conductance.
View Article and Find Full Text PDFMost biological rates depend on the rate of respiration. Temperature variation is typically considered the main driver of daily plant respiration rates, assuming a constant daily respiration rate at a set temperature. Here, we show empirical data from 31 species from temperate and tropical biomes to demonstrate that the rate of plant respiration at a constant temperature decreases monotonically with time through the night, on average by 25% after 8 h of darkness.
View Article and Find Full Text PDFMore frequent droughts and rising temperatures pose serious threats to tropical forests. When stomata are closed under dry and hot conditions, plants lose water through leaf cuticles, but little is known about cuticle conductance (g ) of tropical trees, how it varies among species and environments, and how it is affected by temperature. We determined g in relation to temperature for 24 tropical tree species across a steep rainfall gradient in Panama, by recording leaf drying curves at different temperatures in the laboratory.
View Article and Find Full Text PDFExceeding thermal thresholds causes irreversible damage and ultimately loss of leaves. The lowland tropics are among the warmest forested biomes, but little is known about heat tolerance of tropical forest plants. We surveyed leaf heat tolerance of sun-exposed leaves from 147 tropical lowland and pre-montane forest species by determining the temperatures at which potential photosystem II efficiency based on chlorophyll a fluorescence started to decrease (T ) and had decreased by 50% (T ).
View Article and Find Full Text PDFAtmospheric and climate change will expose tropical forests to conditions they have not experienced in millions of years. To better understand the consequences of this change, we studied photosynthetic acclimation of the neotropical tree species Tabebuia rosea to combined 4°C warming and twice-ambient (800 ppm) CO . We measured temperature responses of the maximum rates of ribulose 1,5-bisphosphate carboxylation (V ), photosynthetic electron transport (J ), net photosynthesis (P ), and stomatal conductance (g ), and fitted the data using a probabilistic Bayesian approach.
View Article and Find Full Text PDFBackground And Aims: The acquisitive-conservative axis of plant ecological strategies results in a pattern of leaf trait covariation that captures the balance between leaf construction costs and plant growth potential. Studies evaluating trait covariation within species are scarcer, and have mostly dealt with variation in response to environmental gradients. Little work has been published on intraspecific patterns of leaf trait covariation in the absence of strong environmental variation.
View Article and Find Full Text PDFTropical forests are experiencing unprecedented high-temperature conditions due to climate change that could limit their photosynthetic functions. We studied the high-temperature sensitivity of photosynthesis in a rainforest site in southern Amazonia, where some of the highest temperatures and most rapid warming in the Tropics have been recorded. The quantum yield (F /F ) of photosystem II was measured in seven dominant tree species using leaf discs exposed to varying levels of heat stress.
View Article and Find Full Text PDFPhotosynthetic carbon uptake by tropical forests is of critical importance in regulating the earth's climate, but rising temperatures threaten this stabilizing influence of tropical forests. Most research on how temperature affects photosynthesis focuses on fully sun-exposed leaves, and little is known about shade leaves, even though shade leaves greatly outnumber sun leaves in lowland tropical forests. We measured temperature responses of light-saturated photosynthesis, stomatal conductance, and the biochemical parameters VCMax (maximum rate of RuBP carboxylation) and JMax (maximum rate of RuBP regeneration, or electron transport) on sun and shade leaves of mature tropical trees of three species in Panama.
View Article and Find Full Text PDFGenetically modified (GM) maize and their non-modified counterparts were compared using MON810 varieties, the only GMO event cultivated in Europe. The differences in grain samples were analysed by omics profiles, including transcriptomics, proteomics and metabolomics. Other cultivated maize varieties were analysed as a reference for the variability that will exist between cultivated varieties.
View Article and Find Full Text PDFThe objective of this study was to quantitatively assess potato omics profiles of new varieties for meaningful differences from analogous profiles of commercial varieties through the SIMCA one-class classification model. Analytical profiles of nine commercial potato varieties, eleven experimental potato varieties, one GM potato variety that had acquired Phytophtora resistance based on a single insert with potato-derived DNA sequences, and its non-GM commercial counterpart were generated. The ten conventional varieties were used to construct the one-class model.
View Article and Find Full Text PDFExperimental research shows that isoprene emission by plants can improve photosynthetic performance at high temperatures. But whether species that emit isoprene have higher thermal limits than non-emitting species remains largely untested. Tropical plants are adapted to narrow temperature ranges and global warming could result in significant ecosystem restructuring due to small variations in species' thermal tolerances.
View Article and Find Full Text PDFThe temperature response of photosynthesis is one of the key factors determining predicted responses to warming in global vegetation models (GVMs). The response may vary geographically, owing to genetic adaptation to climate, and temporally, as a result of acclimation to changes in ambient temperature. Our goal was to develop a robust quantitative global model representing acclimation and adaptation of photosynthetic temperature responses.
View Article and Find Full Text PDFPrevious studies of heat tolerance of tropical trees have focused on canopy leaves exposed to full sunlight and high temperatures. However, in lowland tropical forests with leaf area indices of 5-6, the vast majority of leaves experience varying degrees of shade and a reduced heat load compared to sun leaves. Here we tested whether heat tolerance is lower in shade than in sun leaves.
View Article and Find Full Text PDF