Publications by authors named "Martijn Oldenhof"

Background: The integrity and reliability of clinical research outcomes rely heavily on access to vast amounts of data. However, the fragmented distribution of these data across multiple institutions, along with ethical and regulatory barriers, presents significant challenges to accessing relevant data. While federated learning offers a promising solution to leverage insights from fragmented data sets, its adoption faces hurdles due to implementation complexities, scalability issues, and inclusivity challenges.

View Article and Find Full Text PDF

Federated multipartner machine learning has been touted as an appealing and efficient method to increase the effective training data volume and thereby the predictivity of models, particularly when the generation of training data is resource-intensive. In the landmark MELLODDY project, indeed, each of ten pharmaceutical companies realized aggregated improvements on its own classification or regression models through federated learning. To this end, they leveraged a novel implementation extending multitask learning across partners, on a platform audited for privacy and security.

View Article and Find Full Text PDF

In drug discovery, knowledge of the graph structure of chemical compounds is essential. Many thousands of scientific articles and patents in chemistry and pharmaceutical sciences have investigated chemical compounds, but in many cases, the details of the structure of these chemical compounds are published only as an image. A tool to analyze these images automatically and convert them into a chemical graph structure would be useful for many applications, such as drug discovery.

View Article and Find Full Text PDF