Publications by authors named "Martijn L T M Muller"

Digital measures may provide objective, sensitive, real-world measures of disease progression in Parkinson's disease (PD). However, multicenter longitudinal assessments of such measures are few. We recently demonstrated that baseline assessments of gait, tremor, finger tapping, and speech from a commercially available smartwatch, smartphone, and research-grade wearable sensors differed significantly between 82 individuals with early, untreated PD and 50 age-matched controls.

View Article and Find Full Text PDF

Neurological disorders represent some of the most challenging therapeutic areas for successful drug approvals. The escalating global burden of death and disability for such diseases represents a significant worldwide public health challenge, and the rate of failure of new therapies for chronic progressive disorders of the nervous system is higher relative to other non-neurological conditions. However, progress is emerging rapidly in advancing the drug development landscape in both rare and common neurodegenerative diseases.

View Article and Find Full Text PDF

There are conflicting results regarding regional age-related changes in serotonin terminal density in human brain. Some imaging studies suggest age-related declines in serotoninergic terminals and perikarya. Other human imaging studies and post-mortem biochemical studies suggest stable brain regional serotoninergic terminal densities across the adult lifespan.

View Article and Find Full Text PDF

Background: Adoption of new digital measures for clinical trials and practice has been hindered by lack of actionable qualitative data demonstrating relevance of these metrics to people with Parkinson's disease.

Objective: This study evaluated of relevance of WATCH-PD digital measures to monitoring meaningful symptoms and impacts of early Parkinson's disease from the patient perspective.

Methods: Participants with early Parkinson's disease (N = 40) completed surveys and 1:1 online-interviews.

View Article and Find Full Text PDF

Background: Patient perspectives on meaningful symptoms and impacts in early Parkinson's disease (PD) are lacking and are urgently needed to clarify priority areas for monitoring, management, and new therapies.

Objective: To examine experiences of people with early-stage PD, systematically describe meaningful symptoms and impacts, and determine which are most bothersome or important.

Methods: Forty adults with early PD who participated in a study evaluating smartwatch and smartphone digital measures (WATCH-PD study) completed online interviews with symptom mapping to hierarchically delineate symptoms and impacts of disease from "Most bothersome" to "Not present," and to identify which of these were viewed as most important and why.

View Article and Find Full Text PDF

There is an exigent need for disease-modifying and symptomatic treatment approaches for Parkinson's disease. A better understanding of Parkinson's disease pathophysiology and new insights in genetics has opened exciting new venues for pharmacological treatment targets. There are, however, many challenges on the path from discovery to drug approval.

View Article and Find Full Text PDF

Cortical cholinergic deficits contribute to cognitive decline and other deficits in Parkinson's disease. Cross-sectional imaging studies suggest a stereotyped pattern of posterior-to-anterior cortical cholinergic denervation accompanying disease progression in Parkinson's disease. We used serial acetylcholinesterase PET ligand imaging to characterize the trajectory of regional cholinergic synapse deficits in Parkinson's disease, testing the hypothesis of posterior-to-anterior progression of cortical cholinergic deficits.

View Article and Find Full Text PDF

The US Food and Drug Administration (FDA) has publicly recognized the importance of improving drug development efficiency, deeming translational biomarkers a top priority. The use of imaging biomarkers has been associated with increased rates of drug approvals. An appropriate level of validation provides a pragmatic way to choose and implement these biomarkers.

View Article and Find Full Text PDF

Background: Degeneration of the cholinergic system plays an important role in cognitive impairment in Parkinson's disease (PD). Positron emission tomography (PET) imaging using the presynaptic vesicular acetylcholine transporter (VAChT) tracer [F]Fluoroethoxybenzovesamicol ([F]FEOBV) allows for regional assessment of cholinergic innervation. The purpose of this study was to perform a data-driven analysis to identify co-varying cholinergic regions and to evaluate the relationship of these with cognitive functioning in PD.

View Article and Find Full Text PDF

Background And Purpose: Abnormal balance is poorly responsive to dopaminergic therapy in Parkinson's disease (PD). Decreased vestibular efficacy may contribute to imbalance in PD. The purpose of this study was to investigate the relationship between vestibular measures of dynamic posturography and imbalance in PD while accounting for confounder variables.

View Article and Find Full Text PDF

The Movement Disorder Society revised version of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS) parts 2 and 3 reflect patient-reported functional impact and clinician-reported severity of motor signs of Parkinson's disease (PD), respectively. Total scores are common clinical outcomes but may obscure important time-based changes in items. We aim to analyze longitudinal disease progression based on MDS-UPRDS parts 2 and 3 item-level responses over time and as functions of Hoehn & Yahr (H&Y) stages 1 and 2 for subjects with early PD.

View Article and Find Full Text PDF

Smartphones and wearables are widely recognised as the foundation for novel Digital Health Technologies (DHTs) for the clinical assessment of Parkinson's disease. Yet, only limited progress has been made towards their regulatory acceptability as effective drug development tools. A key barrier in achieving this goal relates to the influence of a wide range of sources of variability (SoVs) introduced by measurement processes incorporating DHTs, on their ability to detect relevant changes to PD.

View Article and Find Full Text PDF

To examine regional cerebral vesicular acetylcholine transporter (VAChT) ligand [F]fluoroethoxybenzovesamicol ([F]-FEOBV) PET binding in Parkinson' disease (PD) patients with and without vestibular sensory conflict deficits (VSCD). To examine associations between VSCD-associated cholinergic brain deficits and postural instability and gait difficulties (PIGD). PD persons (M70/F22; mean age 67.

View Article and Find Full Text PDF

Sensor data from digital health technologies (DHTs) used in clinical trials provides a valuable source of information, because of the possibility to combine datasets from different studies, to combine it with other data types, and to reuse it multiple times for various purposes. To date, there exist no standards for capturing or storing DHT biosensor data applicable across modalities and disease areas, and which can also capture the clinical trial and environment-specific aspects, so-called metadata. In this perspectives paper, we propose a metadata framework that divides the DHT metadata into metadata that is independent of the therapeutic area or clinical trial design (concept of interest and context of use), and metadata that is dependent on these factors.

View Article and Find Full Text PDF

Dysfunction and degeneration of CNS cholinergic systems is a significant component of multi-system pathology in Parkinson's disease (PD). We review the basic architecture of human CNS cholinergic systems and the tools available for studying changes in human cholinergic systems. Earlier post-mortem studies implicated abnormalities of basal forebrain corticopetal cholinergic (BFCC) and pedunculopontine-laterodorsal tegmental (PPN-LDT) cholinergic projections in cognitive deficits and gait-balance deficits, respectively.

View Article and Find Full Text PDF

Background: Altered cholinergic innervation plays a putative role in cognitive impairment in Parkinson's disease (PD) at least in advanced stages. Identification of the relationship between cognitive impairment and cholinergic innervation early in the disease will provide better insight into disease prognosis and possible early intervention.

Objective: The aim was to assess regional cholinergic innervation status in de novo patients with PD, with and without cognitive impairment.

View Article and Find Full Text PDF

Clinical effects of anti-cholinergic drugs implicate cholinergic systems alterations in the pathophysiology of some cardinal motor impairments in Parkinson's disease. The topography of affected cholinergic systems deficits and motor domain specificity are poorly understood. Parkinson's disease patients ( = 108) underwent clinical and motor assessment and vesicular acetylcholine transporter [F]-fluoroethoxybenzovesamicol PET imaging.

View Article and Find Full Text PDF

Previous studies of animal models of Parkinson disease (PD) suggest an imbalance between striatal acetylcholine and dopamine, although other studies have questioned this. To our knowledge, there are no previous in vivo neuroimaging studies examining striatal acetylcholine-dopamine imbalance in PD patients. Using cholinergic and dopaminergic PET (F-fluoroethoxybenzovesamicol [F-FEOBV] and C-dihydrotetrabenazine [C-DTBZ], respectively) and correlational tractography, our aim was to investigate the acetylcholine-dopamine interaction at 2 levels of dopaminergic loss in PD subjects: integrity loss of the nigrostriatal dopaminergic white matter tract and loss at the presynaptic-terminal level.

View Article and Find Full Text PDF

Objective: Attentional deficits following degeneration of brain cholinergic systems contribute to gait-balance deficits in Parkinson disease (PD). As a step toward assessing whether α4β2* nicotinic acetylcholine receptor (nAChR) stimulation improves gait-balance function, we assessed target engagement of the α4β2* nAChR partial agonist varenicline.

Methods: Nondemented PD participants with cholinergic deficits were identified with [ F]fluoroethoxybenzovesamicol positron emission tomography (PET).

View Article and Find Full Text PDF

Since the earliest days of nuclear medicine, there has been interest in using PET and SPECT imaging to interrogate and quantify the cholinergic system. In this Viewpoint we highlight key milestones in the development of cholinergic imaging agents, including identification of radiopharmaceuticals targeting the receptors, transporters, and enzymes of the cholinergic synapse, as well as fundamental developments in the radiopharmaceutical sciences (e.g.

View Article and Find Full Text PDF

Purpose Of Review: This paper aims to review novel trends in cholinergic neuroimaging in Alzheimer and Lewy body parkinsonian disorders.

Recent Findings: The spectrum of cholinergic imaging is expanding with the availability of spatially more precise radioligands that allow assessment of previously less recognized subcortical and cortical structures with more dense cholinergic innervation. In addition, advances in MRI techniques now allow quantitative structural or functional assessment of both the cholinergic forebrain and the pedunculopontine nucleus, which may serve as non-invasive prognostic predictors.

View Article and Find Full Text PDF

Background: The cholinergic system plays a key role in cognitive impairment in Parkinson's disease (PD). Previous acetylcholinesterase positron emission tomography imaging studies found memory, attention, and executive function correlates of global cortical cholinergic losses. Vesicular acetylcholine transporter positron emission tomography allows for more accurate topographic assessment of not only cortical but also subcortical cholinergic changes.

View Article and Find Full Text PDF

Previous histopathologic and animal studies have shown axonal impairment and loss of connectivity of the nigrostriatal pathway in Parkinson disease (PD). However, there are conflicting reports from in vivo human studies. C-dihydrotetrabenazine (C-DTBZ) is a vesicular monoamine type 2 transporter PET ligand that allows assessment of nigrostriatal presynaptic dopaminergic terminal integrity.

View Article and Find Full Text PDF

Background: Physical inactivity is prevalent in older adults with type 2 diabetes mellitus (T2DM) and may exacerbate their clinical symptoms. The aim of this study was to examine the feasibility of 4-h regular versus more dynamic standing sessions while performing routine desktop activities as a non-exercise physical activity intervention in older adults with T2DM to increase non-exercise activity.

Methods: Twelve older adult patients with T2DM (3 female; age 71 ± 4 years; Body mass index 34 ± 5 kg/m) completed three sessions (baseline sitting followed by "static" or "dynamic" desktop standing sessions).

View Article and Find Full Text PDF