Immunotherapy has proven beneficial in many hematologic and nonhematologic malignancies, but immunotherapy for acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) is hampered by the lack of tumor-specific targets. We took advantage of the tumor-immunotherapeutic effect of allogeneic hematopoietic stem cell transplantation and searched the B-cell repertoire of a patient with a lasting and potent graft-versus-AML response for the presence of AML-specific antibodies. We identified an antibody, AT1413, that was of donor origin and that specifically recognizes a novel sialylated epitope on CD43 (CD43s).
View Article and Find Full Text PDFMost patients with acute myeloid leukemia (AML) can only be cured when allogeneic hematopoietic stem-cell transplantation induces a graft-versus-leukemia immune response (GVL). Although the role of T cells and natural killer cells in tumor immunology has been established, less is known about the contribution of B cells. From B cells of high-risk patients with AML with potent and lasting GVL responses, we isolated monoclonal antibodies directed against antigens expressed on the cell surface of AML cells but not on normal hematopoietic and nonhematopoietic cells.
View Article and Find Full Text PDFNon-protein-coding transcripts have been conserved throughout evolution, indicating that crucial functions exist for these RNAs. For example, microRNAs (miRNAs) have been found to modulate most cellular processes. The protein classes of RNA-binding proteins include essential regulators of miRNA biogenesis, turnover and activity.
View Article and Find Full Text PDFKey regulators of 3' untranslated regions (3' UTRs) are microRNAs and RNA-binding proteins (RBPs). The p27 tumour suppressor is highly expressed in quiescent cells, and its downregulation is required for cell cycle entry after growth factor stimulation. Intriguingly, p27 accumulates in quiescent cells despite high levels of its inhibitors miR-221 and miR-222 (Refs 5, 6).
View Article and Find Full Text PDFMicroRNAs (miRNAs) are genes involved in normal development and cancer. They inhibit gene expression by associating with 3'-Untranslated regions (3'UTRs) of messenger RNAs (mRNAs), and are thought to regulate a large proportion of protein coding genes. However, it is becoming apparent that miRNA activity is not necessarily always determined by its expression in the cell.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are small noncoding RNA molecules of 20-24 nucleotides that regulate gene expression. In animals, miRNAs form imperfect interactions with sequences in the 3' Untranslated region (3'UTR) of mRNAs, causing translational inhibition and mRNA decay. In contrast, plant miRNAs mostly associate with protein coding regions.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are inhibitors of gene expression capable of controlling processes in normal development and cancer. In mammals, miRNAs use a seed sequence of 6-8 nucleotides (nt) to associate with 3' untranslated regions (3'UTRs) of mRNAs and inhibit their expression. Intriguingly, occasionally not only the miRNA-targeting site but also sequences in its vicinity are highly conserved throughout evolution.
View Article and Find Full Text PDFThe human telomerase RNA (hTR), together with the telomerase reverse transcriptase, hTERT, constitute the core components of telomerase that is essential for telomere maintenance. While hTR is ubiquitously expressed, hTERT is normally restricted to germ cells and certain stem cells, but both are often deregulated during tumorigenesis. Here, we investigated the effects of changes in hTR cellular levels.
View Article and Find Full Text PDF