Publications by authors named "Martijn G van Koningsbruggen"

Brain representations of visual space are predominantly eye-centred (retinotopic) yet our experience of the world is largely world-centred (spatiotopic). A long-standing question is how the brain creates continuity between these reference frames across successive eye movements (saccades). Here we use functional magnetic resonance imaging (fMRI) to address whether spatially specific repetition suppression (RS) is evident during trans-saccadic perception.

View Article and Find Full Text PDF

When processing dynamic input, the brain balances the opposing needs of temporal integration and sensitivity to change. We hypothesized that the visual system might resolve this challenge by aligning integration windows to the onset of newly arriving sensory samples. In a series of experiments, human participants observed the same sequence of two displays separated by a brief blank delay when performing either an integration or segregation task.

View Article and Find Full Text PDF

Reward feedback following visual search causes the visual characteristics of targets to become salient and attention-drawing, but little is known about the mechanisms underlying this value-driven capture effect. Here, we use transcranial random noise stimulation (tRNS) to demonstrate that such reward potentiation involves induced plasticity in visual cortex. Human participants completed a feature-search reward-learning task involving the selection of a red or green colored target presented among distractors of various color.

View Article and Find Full Text PDF

People are extremely efficient at detecting relevant objects in complex natural scenes. In three experiments, we used functional magnetic resonance imaging-guided transcranial magnetic stimulation (TMS) to investigate the role of the extrastriate body area (EBA) in the detection of people in scenes. In Experiment 1, participants reported, in different blocks, whether people or cars were present in a briefly presented scene.

View Article and Find Full Text PDF

The current paper describes a rare case of a patient who suffered from unilateral apraxia of eye closure as a result of a bilateral stroke. Interestingly, the patient's ability to voluntarily close both eyelids (i.e.

View Article and Find Full Text PDF

In tasks that selectively probe visual or spatial working memory (WM) frontal and posterior cortical areas show a segregation, with dorsal areas preferentially involved in spatial (e.g. location) WM and ventral areas in visual (e.

View Article and Find Full Text PDF

Parietal cortex has been implicated in the updating, after eye movements, of a salience map that is required for coherent visual experience and for the control of visually guided behavior. The current experiment investigated whether TMS over anterior intraparietal cortex (AIPCx), just after a saccade, would affect the ability to update and maintain a salience map. In order to generate a salience map, we employed a paradigm in which an uninformative cue was presented at one object in a display to generate inhibition of return (IOR)-an inhibitory tag that renders the cued object less salient than others in the display, and that slows subsequent responses to visual transients at its location.

View Article and Find Full Text PDF

To investigate the role of the basal ganglia in integrating voluntary and reflexive behaviour, the current study examined the ability of patients with Parkinson's disease to voluntarily control oculomotor reflexes. We measured the size of the fixation offset effect (the reduction in saccadic reaction time when a fixation point is removed) during a block of pro- and a block of anti-saccades. Healthy controls showed the expected reduction of the FOE during the anti-saccades, which results from efforts to suppress reflexive eye movements (a preparatory set characterized by increased internal control and reduced external control).

View Article and Find Full Text PDF

The reduction in saccade latency when the fixation point is removed (fixation offset effect-FOE) reflects the degree to which fixation neurons are under influence by a stimulus at fixation. Strategic manipulations of oculomotor readiness that bring these neurons under endogenous control reduce the magnitude of the FOE. Using an aging foreperiod paradigm, and the FOE as a marker for cortical control of reflexive fixation, we showed that, for both prosaccades and antisaccades, increasing preparation across the foreperiod reduced both saccade latency and the FOE.

View Article and Find Full Text PDF