There has been extensive activity exploring the doping of semiconducting two-dimensional (2D) transition metal dichalcogenides in order to tune their electronic and magnetic properties. The outcome of doping depends on various factors, including the intrinsic properties of the host material, the nature of the dopants used, their spatial distribution, as well as their interactions with other types of defects. A thorough atomic-level analysis is essential to fully understand these mechanisms.
View Article and Find Full Text PDFA key issue in the development of high-performance semiconductor devices is the ability to properly measure active dopants at the nanometer scale. In a p-n junction, the abruptness of the dopant profile around the metallurgical junction directly influences the electric field. Here, a contacted nominally symmetric and highly doped ( = = 9 × 10 cm) silicon p-n specimen is studied through in situ biased four-dimensional scanning transmission electron microscopy (4D-STEM).
View Article and Find Full Text PDF