Short bubble and subsequent surface oxygenation is an innovative oxygenation technique and alternative for membrane oxygenation during hypothermic machine perfusion (HMP). The metabolic effect of the interruption of surface oxygenation for 4 h (mimicking organ transport) during HMP was compared to continuous surface and membrane oxygenation in a pig kidney ex situ preservation model. After 30 min of warm ischemia by vascular clamping, a kidney of a ±40 kg pig was procured and subsequently preserved according to one of the following groups: (1) 22-h HMP + intermittent surface oxygenation ( = 12); (2) 22-h HMP + continuous membrane oxygenation ( = 6); and (3) 22-h HMP + continuous surface oxygenation ( = 7).
View Article and Find Full Text PDFBackground: The aim of this feasibility study was to determine an alternative oxygenation technique (easy, cheap, and compatible with air transport) for membrane oxygenation during hypothermic machine perfusion (HMP) to improve early graft function in a porcine ischemia-reperfusion autotransplant model.
Methods: The left kidney of a ±40- kg pig was exposed to 30 minutes of warm ischemia before 22 hours of preservation and autotransplantation. In the experimental group, oxygenation of the perfusate during HMP was obtained by direct bubble and 30-minute surface oxygenation at start and 1-hour end ischemic (n = 4) and outcome measures compared with historical HMP without active oxygenation (n = 6), 22-hour continuous oxygenated HMP (HMPO) (n = 8), and 2-hour HMPO + 20-hour HMP (n = 6) using membrane oxygenation in both historical oxygenated control groups.
With oxygenation proposed as a resuscitative measure during hypothermic models of preservation, the aim of this study was to evaluate the optimal start time of oxygenation during continuous hypothermic machine perfusion (HMP). In this porcine ischemia-reperfusion autotransplant model, the left kidney of a ±40 kg pig was exposed to 30 minutes of warm ischemia prior to 22 hours of HMP and autotransplantation. Kidneys were randomized to receive 2 hours of oxygenation during HMP either at the start (n = 6), or end of the perfusion (n = 5) and outcomes were compared to standard, nonoxygenated HMP (n = 6) and continuous oxygenated HMP (n = 8).
View Article and Find Full Text PDFBackground: The optimal perfusate partial pressure of oxygen (PO2) during hypothermic machine perfusion (HMP) is unknown. The aims of the study were to determine the functional, metabolic, structural, and flow dynamic effects of low and high perfusate PO2 during continuous HMP in a pig kidney ischemia-reperfusion autotransplant model.
Methods: The left kidneys of a ±40 kg pigs were exposed to 30 minutes of warm ischemia and randomized to receive 22-hour HMP with either low perfusate PO2 (30% oxygen, low oxygenated HMP [HMPO2]) (n = 8) or high perfusate PO2 (90% oxygen, HMPO2high) (n = 8), before autotransplantation.
The aims of this study were to determine the most optimal timing to start machine perfusion during kidney preservation to improve early graft function and to evaluate the impact of temperature and oxygen supply during machine perfusion in a porcine ischemia-reperfusion autotransplant model. The left kidney of an approximately 40-kg female Belgian Landrace pig was exposed to 30 minutes of warm ischemia via vascular clamping and randomized to 1 of 6 study groups: (1) 22-hour static cold storage (SCS) (n = 6), (2) 22-hour hypothermic machine perfusion (HMP) (n = 6), (3) 22-hour oxygenated HMP (n = 7), (4) 20-hour HMP plus 2-hour normothermic perfusion (NP) (n = 6), (5) 20-hour SCS plus 2-hour oxygenated HMP (n = 7), and (6) 20-hour SCS plus 2-hour NP (n = 6). Graft recovery measured by serum creatinine level was significantly faster for continuous HMP preservation strategies compared with SCS alone and for all end-ischemic strategies.
View Article and Find Full Text PDFBackground: In the field of vascularized composite tissue allotransplantation, the surgical design of facial subunit grafts is an evolving concept. The purpose of the present article is to study the possibility of dividing the historical nose and lip face transplant into several morphologic and functional subunit grafts, depending on their respective supply.
Methods: This study was conducted in 20 adult cadavers.
Background: In the pig-to-baboon model, acute vascular rejection remains the main hurdle for successful long-term xenograft survival. The production of galactosyl knockout pigs could solve concomitantly the problem of hyperacute and acute vascular rejection. This work studies in vitro the cell-mediated cytotoxicity of natural killer (NK) and T cells after priming of baboon peripheral blood lymphocytes (PBLs) with pig antigens to evaluate whether cytotoxicity is galactosyl-dependent.
View Article and Find Full Text PDF