Plant pathogens can alter the behavior of their insect vectors as well as their survival and reproduction. The African psyllid, Trioza erytreae, is one of the vectors of Huanglongbing, a citrus disease caused mainly by "Candidatus Liberibacter asiaticus" (CLas). The purpose of this study was to characterize the effects of CLas on the psyllid, T.
View Article and Find Full Text PDFIntroduction: Huanglonbing (HLB) is the most serious disease of citrus in the world, associated with three non-cultivable phloem-restricted bacteria Liberibacter asiaticus (Las), L. africanus (Laf) and L. americanus (Lam).
View Article and Find Full Text PDFThe invasion success of a species in an agrosystem is greatly influenced by environmental factors such as the use of insecticides, by the intrinsic evolutionary capabilities of the species, and also by interactions with resident species. On the island of La Réunion, the successive invasions of MEAM1 and MED whitefly species over the last 20 years have not only led an increased use of insecticides, but have also challenged the resident IO species. To trace the evolution of the 3 species, and the distribution of the kdr mutation (resistance to pyrethroid) in the para-type voltage-gated sodium channel, we genotyped 41 populations (using neutral nuclear markers) and look at the prevalence of the kdr allele.
View Article and Find Full Text PDFBackground: Global and intensive use of insecticides has led to the emergence and rapid evolution of resistance in the major pest Bemisia tabaci (Gennadius). In La Réunion, an island of the South West Indian Ocean, three whitefly species coexist, two of which are predominant, the indigenous Indian Ocean (IO) and the invasive Middle East Asia Minor 1 (MEAM1) species. To assess the resistance level of both of these species to acetamiprid and pymetrozine, whitefly populations were sampled at 15 collection sites located all over the island in agroecosystems and natural areas, and tested using leaf-dip bioassays.
View Article and Find Full Text PDFABSTRACT Spatial and temporal distribution of Maize streak virus (MSV, family Geminiviridae, genus Mastrevirus) was monitored in the vector species Cicadulina mbila and the nonvector species C. chinaï using conventional and real-time quantitative polymerase chain reaction. Sustained feeding on MSV-infected plants showed that virus accumulation reaches a maximum in C.
View Article and Find Full Text PDF