Opioid use disorder (OUD) is a serious health problem that may lead to physical dependence, in addition to affective disorders. Preclinical models are essential for studying the neurobiology of and developing pharmacotherapies to treat these problems. Historically, chronic morphine injections have most often been used to produce opioid-dependent animals, and withdrawal signs indicative of dependence were precipitated by administering an opioid antagonist.
View Article and Find Full Text PDFThe neural network of the enteric nervous system (ENS) underlies gastrointestinal functions. However, the molecular mechanisms involved in enteric neuronal connectivity are poorly characterized. Here, we studied the role of semaphorin 5A (Sema5A), previously characterized in the central nervous system, on ENS neuronal connectivity.
View Article and Find Full Text PDFThe enteric nervous system (ENS) is the intrinsic nervous system that innervates the entire digestive tract and regulates major digestive functions. Recent evidence has shown that functions of the ENS critically rely on enteric neuronal connectivity; however, experimental models to decipher the underlying mechanisms are limited. Compared to the central nervous system, for which pure neuronal cultures have been developed for decades and are recognized as a reference in the field of neuroscience, an equivalent model for enteric neurons is lacking.
View Article and Find Full Text PDFBackground: Management of pain post-surgery is crucial for tissue healing in both veterinary and human medicine. Overuse of some analgesics such as opioids may lead to addictions and worsen pain syndromes (opioid-induced hyperalgesia), while underuse of it may affect the welfare of the patient. Therefore, the importance of using surgery models in laboratory animals is increasing, with the goal of improving our understanding of pain neurobiology and developing safer analgesics.
View Article and Find Full Text PDFThe sensorimotor and histological aspects of peripheral neuropathies were already studied by our team in two rat models: the sciatic nerve crush and the Charcot-Marie-Tooth-1A disease. In this study, we sought to highlight and compare the protein signature of these two pathological situations. Indeed, the identification of protein profiles in diseases can play an important role in the development of pharmacological targets.
View Article and Find Full Text PDFLeucine-rich repeat kinase 2 (LRRK2) gene, which is the gene most commonly associated with Parkinson's disease (PD), is also a susceptibility gene for Crohn's disease, thereby suggesting that LRRK2 may sit at the crossroads of gastrointestinal inflammation, Parkinson's, and Crohn's disease. LRRK2 protein has been studied intensely in both CNS neurons and in immune cells, but there are only few studies on LRRK2 in the enteric nervous system (ENS). LRRK2 is present in ENS ganglia and the existing studies on LRRK2 expression in colonic biopsies from PD subjects have yielded conflicting results.
View Article and Find Full Text PDFHIV-associated sensory neuropathies (HIV-SN) are prevalent in >50% of patients aged over 45 years many of which report moderate to severe chronic pain. Previous preclinical studies have investigated the mechanisms by which HIV-1 causes sensory neuropathies and pain-like behaviors. The aim of the present study is to delineate the role of chronic HIV-1 trans-activator of transcription protein (Tat) exposure in the development of neuropathy in mice.
View Article and Find Full Text PDFBackground: The phenomenon of alcohol analgesia and tolerance can facilitate misuse and lead to the development of alcohol use disorder (AUD). Numerous alcohol-induced behaviors are genetically influenced; however, it is unknown if alcohol analgesia has a genetic contribution. Rodent studies have shown that alcohol responses differ vastly between two widely studied inbred strains of mice, C57BL/6 J (B6) and DBA/2 J (D2).
View Article and Find Full Text PDFPaclitaxel is widely used in the treatment of various types of solid malignancies. Paclitaxel-induced peripheral neuropathy (PIPN) is often characterized by burning pain, cold, and mechanical allodynia in patients. Currently, specific pharmacological treatments against PIPN are lacking.
View Article and Find Full Text PDFChemotherapy-induced peripheral neuropathy (CIPN) is a common, dose limiting, and long-lasting side effect of chemotherapy treatment. Unfortunately, no treatment has proven efficacious for this side effect. Rodent models play a crucial role in the discovery of new mechanisms underlying the initiation, progression, and recovery of CIPN and the potential discovery of new therapeutics.
View Article and Find Full Text PDFBackground: Although paclitaxel is an effective chemotherapeutic agent used to treat multiple types of cancer (e.g. breast, ovarian, neck and lung), it also elicits paclitaxel-induced peripheral neuropathy (PIPN), which represents a major dose-limiting side effect of this drug.
View Article and Find Full Text PDFBackground And Purpose: Paclitaxel, a widely used anti-cancer drug, is frequently associated with prolonged and severe peripheral neuropathies (PIPN), associated with neuroinflammation. Currently, PIPN effective treatments are lacking. Peroxisome Proliferator-Activated Receptor-α (PPAR-⍺) can modulate inflammatory responses.
View Article and Find Full Text PDFBackground: Paclitaxel-induced peripheral neuropathy (PIPN) is a major adverse effect of this chemotherapeutic agent that is used in the treatment of a number of solid malignancies. PIPN leads notably to burning pain, cold and mechanical allodynia. PIPN is thought to be a consequence of alterations of mitochondrial function, hyperexcitability of neurons, nerve fiber loss, oxidative stress and neuroinflammation in dorsal root ganglia (DRG) and spinal cord (SC).
View Article and Find Full Text PDFPeripheral neuropathies (PN) can be triggered after metabolic diseases, traumatic peripheral nerve injury, genetic mutations, toxic substances, and/or inflammation. PN is a major clinical problem, affecting many patients and with few effective therapeutics. Recently, interest in natural dietary compounds, such as polyphenols, in human health has led to a great deal of research, especially in PN.
View Article and Find Full Text PDFThe most prevalent form of Charcot-Marie-Tooth disease (CMT type 1A) is characterized by duplication of the PMP22 gene, peripheral dysmyelination and decreased nerve conduction velocities leading to muscle weakness. Recently, oxidative stress was reported as a feature in CMT1A patients. Curcumin exhibits antioxidant activities and has shown beneficial properties on peripheral nerves.
View Article and Find Full Text PDFSubstantial evidence from preclinical models of pain suggests that basal and noxious nociceptive sensitivity, as well as antinociceptive responses to drugs, show significant heritability. Individual differences to these responses have been observed across species from rodents to humans. The use of closely related C57BL/6 inbred mouse substrains can facilitate gene mapping of acute nociceptive behaviors in preclinical pain models.
View Article and Find Full Text PDFPeripheral neuropathy is one of the most common, dose limiting, and long-lasting disabling adverse events of chemotherapy treatment. Unfortunately, no treatment has proven efficacy to prevent this adverse effect in patients or improve the nerve regeneration, once it is established. Experimental models, particularly using rats and mice, are useful to investigate the mechanisms related to axonal or neuronal degeneration and target loss of function induced by neurotoxic drugs, as well as to test new strategies to prevent the development of neuropathy and to improve functional restitution.
View Article and Find Full Text PDFPaclitaxel (Brand name Taxol) is widely used in the treatment of common cancers like breast, ovarian and lung cancer. Although highly effective in blocking tumor progression, paclitaxel also causes peripheral neuropathy as a side effect in 60-70% of chemotherapy patients. Recent efforts by numerous labs have aimed at defining the underlying mechanisms of paclitaxel-induced peripheral neuropathy (PIPN).
View Article and Find Full Text PDFAs Alzheimer's disease (AD) induces several cellular and molecular damages, it could be interesting to use multi-target molecules for therapeutics. We previously published that trans ε-viniferin induced the disaggregation of Aβ42 peptide and inhibited the inflammatory response in primary cellular model of AD. Here, effects of this stilbenoid were evaluated in transgenic APPswePS1dE9 mice.
View Article and Find Full Text PDFPeripheral nerves are particularly vulnerable to injuries and are involved in numerous pathologies for which specific treatments are lacking. This review summarizes the pathophysiological features of the most common traumatic nerve injury in humans and the different animal models used in nerve regeneration studies. The current knowledge concerning Wallerian degeneration and nerve regrowth is then described.
View Article and Find Full Text PDFTraumatic injuries to peripheral nerves are frequent, however, specific pharmacological treatments are currently lacking. Curcumin has antioxidant, anti-inflammatory and neuroprotective properties but high oral doses are required for therapeutic use, particularly due to its low bioavailability. The aim of the present study was to investigate the effects of local and continuous treatment using low curcumin doses on functional recovery and nerve regeneration after rat sciatic nerve crush (SNC).
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.