Publications by authors named "Marti Checa"

Article Synopsis
  • Scientists are studying super-domains in a special material called ferroelectric PbSrTiO to understand how they can change shapes and behave differently.
  • They discovered a new way to control these super-domains using a tiny tool that can switch their shapes on demand.
  • This research could help create advanced technology that works like the human brain, making smart devices more efficient and flexible.
View Article and Find Full Text PDF
Article Synopsis
  • Combinatorial spread libraries enable the study of material properties across various concentrations and conditions, but traditionally require extensive functional property measurements.
  • The authors introduce automated piezoresponse force microscopy (PFM) to efficiently analyze these libraries, specifically in the SmBiFeO system, which features a unique phase boundary between ferroelectric and antiferroelectric states.
  • By utilizing PFM and developing a mathematical framework based on Ginzburg-Landau theory, they aim to streamline materials discovery and make their data accessible for further research in the field.
View Article and Find Full Text PDF

Microscopy has been pivotal in improving the understanding of structure-function relationships at the nanoscale and is by now ubiquitous in most characterization labs. However, traditional microscopy operations are still limited largely by a human-centric click-and-go paradigm utilizing vendor-provided software, which limits the scope, utility, efficiency, effectiveness, and at times reproducibility of microscopy experiments. Here, a coupled software-hardware platform is developed that consists of a software package termed AEcroscopy (short for Automated Experiments in Microscopy), along with a field-programmable-gate-array device with LabView-built customized acquisition scripts, which overcome these limitations and provide the necessary abstractions toward full automation of microscopy platforms.

View Article and Find Full Text PDF

High strength and ductility are highly desired in fiber-reinforced composites, yet achieving both simultaneously remains elusive. A hierarchical architecture is developed utilizing high aspect ratio chemically transformable thermoplastic nanofibers that form covalent bonding with the matrix to toughen the fiber-matrix interphase. The nanoscale fibers are electrospun on the micrometer-scale reinforcing carbon fiber, creating a physically intertwined, randomly oriented scaffold.

View Article and Find Full Text PDF

Unraveling local dynamic charge processes is vital for progress in diverse fields, from microelectronics to energy storage. This relies on the ability to map charge carrier motion across multiple length- and timescales and understanding how these processes interact with the inherent material heterogeneities. Towards addressing this challenge, we introduce high-speed sparse scanning Kelvin probe force microscopy, which combines sparse scanning and image reconstruction.

View Article and Find Full Text PDF

Van der Waals layered ferroelectrics, such as CuInPS (CIPS), offer a versatile platform for miniaturization of ferroelectric device technologies. Control of the targeted composition and kinetics of CIPS synthesis enables the formation of stable self-assembled heterostructures of ferroelectric CIPS and nonferroelectric InPS (IPS). Here, we use quantitative scanning probe microscopy methods combined with density functional theory (DFT) to explore in detail the nanoscale variability in dynamic functional properties of the CIPS-IPS heterostructure.

View Article and Find Full Text PDF

Mapping the biochemical composition of eukaryotic cells without the use of exogenous labels is a long-sought objective in cell biology. Recently, it has been shown that composition maps on dry single bacterial cells with nanoscale spatial resolution can be inferred from quantitative nanoscale dielectric constant maps obtained with the scanning dielectric microscope. Here, it is shown that this approach can also be applied to the much more challenging case of fixed and dry eukaryotic cells, which are highly heterogeneous and show micrometric topographic variations.

View Article and Find Full Text PDF

Mapping the dielectric properties of cells with nanoscale spatial resolution can be an important tool in nanomedicine and nanotoxicity analysis, which can complement structural and mechanical nanoscale measurements. Recently we have shown that dielectric constant maps can be obtained on dried fixed cells in air environment by means of scanning dielectric force volume microscopy. Here, we demonstrate that such measurements can also be performed in the much more challenging case of fixed cells in liquid environment.

View Article and Find Full Text PDF

Polymer nanocomposite materials based on metallic nanowires are widely investigated as transparent and flexible electrodes or as stretchable conductors and dielectrics for biosensing. Here we show that Scanning Dielectric Microscopy (SDM) can map the depth distribution of metallic nanowires within the nanocomposites in a non-destructive way. This is achieved by a quantitative analysis of sub-surface electrostatic force microscopy measurements with finite-element numerical calculations.

View Article and Find Full Text PDF

Organic self-assembled monolayers (SAMs) at metal/electrolyte interfaces have been thoroughly investigated both from fundamental and applied points of view. A relevant figure of merit of metal/SAM/electrolyte interfaces is the specific capacitance, which determines the charge that can be accumulated at the metal electrode. Here, we show that the specific capacitance of non-uniform alkanethiol SAMs at gold/electrolyte interfaces can be quantitatively measured and mapped at the nanoscale by in-liquid scanning dielectric microscopy in force detection mode.

View Article and Find Full Text PDF

Mapping the dielectric constant at the nanoscale of samples showing a complex topography, such as non-planar nanocomposite materials or single cells, poses formidable challenges to existing nanoscale dielectric microscopy techniques. Here we overcome these limitations by introducing Scanning Dielectric Force Volume Microscopy. This scanning probe microscopy technique is based on the acquisition of electrostatic force approach curves at every point of a sample and its post-processing and quantification by using a computational model that incorporates the actual measured sample topography.

View Article and Find Full Text PDF