Publications by authors named "Marthinus W Myburgh"

Consolidated bioprocessing (CBP) of starch requires recombinant Saccharomyces cerevisiae strains that produce raw starch-degrading enzymes and ferment the resultant sugars to ethanol in a single step. In this study, the native S. cerevisiae COX4 and RPS25A promoter-proximal introns were evaluated for enhanced expression of amylase genes (ateA, temA or temG_Opt) under the control of an S.

View Article and Find Full Text PDF

Single-use bioplastic items pose new challenges for a circular plastics economy as they require different processing than petroleum-based plastics items. Microbial and enzymatic recycling approaches could address some of the pitfalls created by the influx of bioplastic waste. In this study, the recombinant expression of a cutinase-like-enzyme (CLE1) was improved in the yeast Saccharomyces cerevisiae to efficiently hydrolyse several commercial single-use bioplastic items constituting blends of poly(lactic acid), poly(1,4-butylene adipate-co-terephthalate), poly(butylene succinate) and mineral fillers.

View Article and Find Full Text PDF

The transcription of genes in the yeast Saccharomyces cerevisiae is governed by multiple layers of regulatory elements and proteins, cooperating to ensure optimum expression of the final protein product based on the cellular requirements. Promoters have always been regarded as the most important determinant of gene transcription, but introns also play a key role in the expression of intron-encoding genes. Some introns can enhance transcription when introduced either promoter-proximal or embedded in the open reading frame of genes.

View Article and Find Full Text PDF

Polylactic acid (PLA) is a major contributor to the global bioplastic production capacity. However, post-consumer PLA waste is not fully degraded during non-optimal traditional organic waste treatment processes and can persist in nature for many years. Efficient enzymatic hydrolysis of PLA would contribute to cleaner, more energy-efficient, environmentally friendly waste management processes.

View Article and Find Full Text PDF

Selected strains of Saccharomyces cerevisiae are used for commercial bioethanol production from cellulose and starch, but the high cost of exogenous enzymes for substrate hydrolysis remains a challenge. This can be addressed through consolidated bioprocessing (CBP) where S. cerevisiae strains are engineered to express recombinant glycoside hydrolases during fermentation.

View Article and Find Full Text PDF

Bioethanol production from starchy biomass via consolidated bioprocessing (CBP) will benefit from amylolytic Saccharomyces cerevisiae strains that produce high levels of recombinant amylases. This could be achieved by using strong promoters and modification thereof to improve gene expression under industrial conditions. This study evaluated eight endogenous S.

View Article and Find Full Text PDF

Amylolytic Saccharomyces cerevisiae derivatives of Ethanol Red™ Version 1 (ER T12) and M2n (M2n T1) were assessed through enzyme assays, hydrolysis trials, electron microscopy and fermentation studies using broken rice. The heterologous enzymes hydrolysed broken rice at a similar rate compared to commercial granular starch-hydrolysing enzyme cocktail. During the fermentation of 20% dw/v broken rice, the amylolytic strains converted rice starch to ethanol in a single step and yielded high ethanol titers.

View Article and Find Full Text PDF