Publications by authors named "Marthe Charles"

Article Synopsis
  • False positive norovirus results were suspected after using the BioFire® FilmArray® Gastrointestinal panel at six labs in British Columbia, prompting further investigation.
  • The study involved additional molecular testing and whole genome sequencing (WGS) to confirm results from BF-GIP, with 215 out of 784 results initially suspecting false positives.
  • Ultimately, it was found that BF-GIP does produce false positives for norovirus, and these cannot be reliably predicted through a review of melting curves.
View Article and Find Full Text PDF

Background: The SARS-CoV-2 pandemic stimulated the advancement and research in the field of canine scent detection of COVID-19 and volatile organic compound (VOC) breath sampling. It remains unclear which VOCs are associated with positive canine alerts. This study aimed to confirm that the training aids used for COVID-19 canine scent detection were indeed releasing discriminant COVID-19 VOCs detectable and identifiable by gas chromatography (GC-MS).

View Article and Find Full Text PDF

Background: Current molecular diagnostics are limited in the number and type of detectable pathogens. Metagenomic next-generation sequencing (mNGS) is an emerging, and increasingly feasible, pathogen-agnostic diagnostic approach. Translational barriers prohibit the widespread adoption of this technology in clinical laboratories.

View Article and Find Full Text PDF

Surfaces on transit vehicles are frequently touched and could potentially act as reservoirs for micro-organism transmission. Regular cleaning and disinfection to minimize the spread of micro-organisms is operationally challenging due to the need to keep vehicles in circulation. The application of copper (Cu) alloys to high- touch surfaces could help reduce the risk of cross-contamination, however, little is known about the durability and efficacy of engineered copper surfaces after prolonged use.

View Article and Find Full Text PDF

Unlabelled: This study aimed to validate Metasystems' automated acid-fast bacilli (AFB) smear microscopy scanning and deep-learning-based image analysis module (Neon Metafer) with assistance on respiratory and pleural samples, compared to conventional manual fluorescence microscopy (MM). Analytical parameters were assessed first, followed by a retrospective validation study. In all, 320 archived auramine-O-stained slides selected non-consecutively [85 originally reported as AFB-smear-positive, 235 AFB-smear-negative slides; with an overall mycobacterial culture positivity rate of 24.

View Article and Find Full Text PDF

Copper has well-documented antibacterial effects but few have evaluated it after prolonged use and against bacteria and viruses. Coupons from three copper formulations (solid, thermal coating, and decal applications) and carbon steel controls were subjected to 200 rounds simulated cleaning using a Wiperator™ and either an accelerated hydrogen peroxide, quaternary ammonium, or artificial sweat products. Antibacterial activity against S.

View Article and Find Full Text PDF

We analyzed 5 years (2016-2020) of nested Canadian data from the Study for Monitoring Antimicrobial Resistance Trends (SMART) to identify pathogen predominance and antimicrobial resistance (AMR) patterns of adult Gram-negative infections in Canadian health care and to complement other public surveillance programs and studies in Canada. A total of 6853 isolates were analyzed from medical (44%), surgical (18%), intensive care (22%) and emergency units (15%) and from respiratory tract (36%), intra-abdominal (25%), urinary tract (24%) and bloodstream (15%) infections. Overall, E.

View Article and Find Full Text PDF

Background: COVID-19 continues to be a public health concern and the demand for fast and reliable screening tests remains. SARS-CoV-2 infection in humans generates a specific volatile organic compound signature; this 'volatilome' could be used to deploy highly trained canine scent detection teams if they could reliably detect odours from infected individuals.

Methods: Two dogs were trained over 19 weeks to discriminate between the odours produced by breath, sweat, and gargle specimens collected from SARS-CoV-2 infected and uninfected individuals.

View Article and Find Full Text PDF

Purpose: Vaginitis is caused by bacterial vaginosis (BV), Candida vaginitis (CV) and Trichomonas vaginalis (TV). This retrospective study evaluates the performance of the Aptima CV/TV, and BV assays on the automated Panther system.

Methods: Two hundred forty-two multitest swabs were tested on the CV/TV assay and 422 on the BV assay.

View Article and Find Full Text PDF

Two commercial real-time PCR assays for the detection of Pneumocystis jirovecii were compared, the quantitative RealStar P. jirovecii assay and the qualitative DiaSorin P. jirovecii assay, the latter of which can be used without nucleic acid extraction.

View Article and Find Full Text PDF

We compared the performance of ID NOW™ COVID-19 assay nasal swabs with RT-PCR of nasopharyngeal swabs for SARS-CoV-2 in an outbreak setting, determining whether addition of RT-PCR of residual nasal swabs (rNS) (post ID NOW™ elution) would increase overall analytic sensitivity. Devices were placed at 2 long term and 1 acute care sites and 51 participants were recruited. Prospective paired nasopharyngeal and nasal samples were collected for RT-PCR and ID NOW™.

View Article and Find Full Text PDF

Objectives: The COVID-19 pandemic and ensuing public health emergency has emphasized the need to study SARS-CoV-2 pathogenesis. The human microbiome has been shown to regulate the host immune system and may influence host susceptibility to viral infection, as well as disease severity. Several studies have assessed whether compositional alterations in the nasopharyngeal microbiota are associated with SARS-CoV-2 infection.

View Article and Find Full Text PDF

Sanger sequencing of the 16S rRNA gene is routinely used for the identification of bacterial isolates. However, this method is still performed mostly in more-specialized reference laboratories, and traditional protocols can be labor intensive. In this study, 99 clinical bacterial isolates were used to validate a fast, simplified, and largely automated protocol for 16S sequencing.

View Article and Find Full Text PDF

A large gap remains between sequencing a microbial community and characterizing all of the organisms inside of it. Here we develop a novel method to taxonomically bin metagenomic assemblies through alignment of contigs against a reference database. We show that this workflow, BugSplit, bins metagenome-assembled contigs to species with a 33% absolute improvement in F1-score when compared to alternative tools.

View Article and Find Full Text PDF

Objectives: The COVID-19 pandemic has underscored the need for rapid novel diagnostic strategies. Metagenomic Next-Generation Sequencing (mNGS) may allow for the detection of pathogens that can be missed in targeted assays. The goal of this study was to assess the performance of nanopore-based Sequence-Independent Single Primer Amplification (SISPA) for the detection and characterization of SARS-CoV-2.

View Article and Find Full Text PDF

Current liver transplantation societies recommend recipients with active coronavirus disease 2019 (COVID-19) be deferred from transplantation for at least 2 wks, have symptom resolution and at least 1 negative severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) test. This approach does not address patients who require urgent transplantation and will otherwise die from liver failure. We report a successful orthotopic liver transplant (OLT) in a patient with active COVID-19 infection.

View Article and Find Full Text PDF

Background: SARS-CoV-2 antibody testing is required for estimating population seroprevalence and vaccine response studies. It may also increase case identification when used as an adjunct to routine molecular testing. We performed a validation study and evaluated the use of automated high-throughput assays in a field study of COVID-19-affected care facilities.

View Article and Find Full Text PDF

We assessed the performance, stability, and user acceptability of swab-independent self-collected saliva and saline mouth rinse/gargle sample types for the molecular detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in adults and school-aged children. Outpatients who had recently been diagnosed with COVID-19 or were presenting with suspected COVID-19 were asked to have a nasopharyngeal (NP) swab collected and provide at least one self-collected sample type. Participants were also asked about sample acceptability using a five-point Likert scale.

View Article and Find Full Text PDF

Background: Candida auris was first described in Japan in 2009 and has since been detected in over 40 countries. The yeast is concerning for multiple reasons, primarily: (1) challenges with accurate identification; (2) reported multidrug resistance; (3) published mortality rates of 30%-60%; and (4) persistence in the environment associated with human transmission. We report the emergence of a healthcare-associated cluster in the Greater Vancouver area in 2018 and describe the measures implemented to contain its transmission.

View Article and Find Full Text PDF

The BioFire® COVID-19 Test and Respiratory Panel 2.1 (RP2.1) are rapid, fully automated assays for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in nasopharyngeal swabs.

View Article and Find Full Text PDF

In light of the present pandemic of novel coronavirus disease 2019 (COVID-19) and the unprecedented high demand for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing worldwide, there are shortages of established specimen collection devices for respiratory viral testing for diagnostic microbiology laboratories. This creates the need to validate unverified collection devices from manufacturers that may not be a registered supplier for medical devices. As clinical laboratories do not routinely perform quality control of established collection devices, there is a need to have a systematic, robust approach to the assessment of substitute unregistered collection swabs and viral transport media (VTM).

View Article and Find Full Text PDF
Article Synopsis
  • The Accelerate Pheno system (AXDX) offers quick identification of pathogens (90 minutes) and antimicrobial susceptibility testing (AST; around 7 hours) from positive blood cultures, which could enhance antibiotic treatment timing.
  • In a study of 158 blood culture specimens, AXDX results were found to be available significantly faster (11.9 hours for ID and 27.7 hours for AST) compared to the standard care, with a high percentage of accurate results.
  • Clinicians could have implemented interventions up to 39 hours sooner using AXDX data, highlighting its potential to improve patient outcomes through timely and informed antibiotic adjustments.
View Article and Find Full Text PDF