Background: Among NSAIDs acetyl salicylic acid remains as a valuable tool because of the variety of benefic prophylactic and therapeutic effects. Nevertheless, the molecular bases for these responses have not been complete understood. We explored the effect of acetyl salicylic acid on the heat shock response.
View Article and Find Full Text PDFBMC Biochem
May 2013
Background: Non-steroidal anti-inflammatory drugs (NSAIDs) -aspirin, naproxen, nimesulide, and piroxicam- lowered activation of type II cAMP-dependent protein kinase A (PKA-II) in isolated rat adipocytes, decreasing adrenaline- and dibutyryl cAMP (Bt2cAMP)-stimulated lipolysis. The molecular bases of insulin-like actions of NSAID were studied.
Results: Based on the reported inhibition of lipolysis by H2O2, catalase was successfully used to block NSAID inhibitory action on Bt2cAMP-stimulated lipolysis.
Among many actions assigned to taurine (Tau), the most abundant amino acid in numerous mammalian tissues, it prevents high-fat diet-induced obesity with increasing resting energy expenditure. To sustain this Tau action, the goal of the present study was to explore the acute effects of Tau on baseline and on adrenaline, insulin and their second messengers to modulate lipolysis in white adipose tissue (WAT) cells from rat epididymis. The Tau effects in this topic were compared with those recorded with Gly, Cys and Met.
View Article and Find Full Text PDFCatecholamines in adipose tissue promote lipolysis via cAMP, whereas insulin stimulates lipogenesis. Here we show that H(2)O(2) generated by insulin in rat adipocytes impaired cAMP-mediated amplification cascade of lipolysis. These micromolar concentrations of H(2)O(2) added before cAMP suppressed cAMP activation of type IIbeta cyclic AMP-dependent protein kinase (PKA) holoenzyme, prevented hormone-sensitive lipase translocation from cytosol to storage droplets, and inhibited lipolysis.
View Article and Find Full Text PDFBackground: Previous work from our laboratory revealed that administration of selected nonsteroidal anti-inflammatory drugs (NSAIDs)-aspirin, naproxen, nimesulide, and piroxicam-prevented some signs of oxidative stress produced in rat livers acutely intoxicated with ethanol. Our final aim was to pursue these advantageous effects of NSAIDs in humans in relation to opposing the oxidative action of ethanol. In preparation for these studies, we conducted a search for tissues that were more accessible than liver, such as plasma and blood cells.
View Article and Find Full Text PDF