Publications by authors named "Martha Sophia Smit"

Cytochrome P450 monooxygenases (CYP450s) are abundant in eukaryotes, specifically in plants and fungi where they play important roles in the synthesis and degradation of secondary metabolites. In eukaryotes, the best studied "self-sufficient" CYP450s, with a fused redox partner, belong to the CYP505 family. Members of the CYP505 family are generally considered sub-terminal fatty acid hydroxylases.

View Article and Find Full Text PDF

The self-sufficient cytochrome P450 monooxygenase CYP505E3 from Aspergillus terreus catalyzes the regioselective in-chain hydroxylation of alkanes, fatty alcohols, and fatty acids at the ω-7 position. It is the first reported P450 to give regioselective in-chain ω-7 hydroxylation of C10-C16 n-alkanes, thereby enabling the one step biocatalytic synthesis of rare alcohols such as 5-dodecanol and 7-tetradecanol. It shows more than 70 % regioselectivity for the eighth carbon from one methyl terminus, and displays remarkably high activity towards decane (TTN≈8000) and dodecane (TTN≈2000).

View Article and Find Full Text PDF

FAD-dependent Baeyer-Villiger monooxygenases (BVMOs) have proven to be useful biocatalysts in the selective and specific oxygenation of various ketones. Despite the cloning, heterologous expression and characterization of close to 80 members of this enzyme family, some sub-groups of BVMOs still remain underrepresented and their evolutionary relationship uncertain. Until recently, very few fungal BVMOs have been described.

View Article and Find Full Text PDF

We investigated Baeyer-Villiger monooxygenase (BVMO)-mediated synthesis of alkyl formate esters, which are important flavor and fragrance products. A recombinant fungal BVMO from Aspergillus flavus was found to transform a selection of aliphatic aldehydes into alkyl formates with high regioselectivity. Near complete conversion of 10 mm octanal was achieved within 8 h with a regiomeric excess of ∼80 %.

View Article and Find Full Text PDF

Baeyer-Villiger monooxygenases (BVMOs) are biocatalysts that convert ketones to esters. Due to their high regio-, stereo- and enantioselectivity and ability to catalyse these reactions under mild conditions, they have gained interest as alternatives to chemical Baeyer-Villiger catalysts. Despite their widespread occurrence within the fungal kingdom, most of the currently characterized BVMOs are from bacterial origin.

View Article and Find Full Text PDF

Candida apicola belongs to a group of yeasts producing surface-active glycolipids consisting of sophorose and long-chain (ω)- or (ω-1)-hydroxy fatty acids. Hydroxylation of the fatty acids in this strain is likely catalyzed by cytochrome P450 monooxygenases (P450), which require reducing equivalents delivered via a cytochrome P450-diflavin reductase (CPR). We herein report cloning and characterization of the cpr gene from C.

View Article and Find Full Text PDF

CYP102A1 is an efficient medium- to long-chain fatty acid hydroxylase that is able to accept a wide range of non-natural substrates which bear no resemblance to the natural ones. 4-Hexylbenzoic acid (HBA) and 4-nonyloxybenzoic acid (NOBA) were identified as CYP102A1 substrates via screening studies using the BD Oxygen Biosensor System. Spectroscopic binding studies showed that these two substrates bind in the active site of CYP102A1 with K(d) values of 2.

View Article and Find Full Text PDF