Publications by authors named "Martha M Teeter"

Dopamine D(2) and D(3) receptors are similar subtypes with distinct interactions with arrestins; the D(3) receptor mediates less agonist-induced translocation of arrestins than the D(2) receptor. The goals of this study were to compare nonphosphorylated arrestin-binding determinants in the second intracellular domain (IC2) of the D(2) and D(3) receptors to identify residues that contribute to the differential binding of arrestin to the subtypes. Arrestin 3 bound to glutathione transferase (GST) fusion proteins of the D(2) receptor IC2 more avidly than to the D(3) receptor IC2.

View Article and Find Full Text PDF

Zinc (II) modulates the function of many integral membrane proteins. To identify the Zn(2+)-binding site responsible for allosteric modulation of the D(2) dopamine receptor, we first demonstrated that the binding site is likely located in extracellular loops or in transmembrane regions that are accessible from the extracellular milieu. We mutated every histidine in these regions to alanine; two mutants, H394A and H399A, exhibited a reduced response to Zn(2+).

View Article and Find Full Text PDF

To test the hypothesis that pharmacological differentiation between D(1) and D(2) dopamine receptors results from interactions of selective ligands with nonconserved residues lining the binding pocket, we mutated amino acid residues in the D(2) receptor to the corresponding aligned residues in the D(1) receptor and vice versa and expressed the receptors in human embryonic kidney 293 cells. Determinations of the affinity of the 14 mutant D(2) receptors and 11 mutant D(1) receptors for D(1)- and D(2)-selective antagonists, and rhodopsin-based homology models of the two receptors, identified two residues whose direct interactions with certain ligands probably contribute to ligand selectivity. The D(1) receptor mutant W99(3.

View Article and Find Full Text PDF

Crystal structure of ubiquitous toxin from barley alpha-hordothionin (alpha-HT) has been determined at 1.9A resolution by X-ray crystallography. The primary sequence as well as the NMR solution structure of alpha-HT firmly established that alpha-HT belongs to a family of membrane active plant toxins-thionins.

View Article and Find Full Text PDF

The myoglobin protein binds oxygen and catalyzes NO oxidation. As a key model protein, its dynamics have been well studied by spectroscopy and by crystallography as well as by simulation. Nonetheless, visualization of the mechanism of movement of ligands within myoglobin has been difficult.

View Article and Find Full Text PDF

Alzheimer's beta amyloid protein (A beta) is a 39 to 43 amino acid peptide that is a major component in the neuritic plaques of Alzheimer's disease (AD). The assemblies constituted from residues 25-35 (A beta 25-35), which is a sequence homologous to the tachykinin or neurokinin class of neuropeptides, are neurotoxic. We used X-ray diffraction and electron microscopy to investigate the structure of the assemblies formed by A beta 25-35 peptides and of various length sequences therein, and of tachykinin-like analogues.

View Article and Find Full Text PDF

The highly ordered crystal structure of crambin has been solved at 1.5 Å resolution directly from the diffraction data of a native crystal at a wavelength remote from the sulphur absorption edge. The molecule has three disulphide bridges among its 46 amino acid residues, of which 46% are in helices and 17% are in a β-sheet.

View Article and Find Full Text PDF