Publications by authors named "Martha Lundberg"

Extracellular vesicles (EVs) carry diverse bioactive components including nucleic acids, proteins, lipids and metabolites that play versatile roles in intercellular and interorgan communication. The capability to modulate their stability, tissue-specific targeting and cargo render EVs as promising nanotherapeutics for treating heart, lung, blood and sleep (HLBS) diseases. However, current limitations in large-scale manufacturing of therapeutic-grade EVs, and knowledge gaps in EV biogenesis and heterogeneity pose significant challenges in their clinical application as diagnostics or therapeutics for HLBS diseases.

View Article and Find Full Text PDF

The Production Assistance for Cellular Therapies (PACT) Program, is funded and supported by the US Department of Health and Human Services' National Institutes of Health (NIH) National Heart Lung and Blood Institute (NHLBI) to advance development of somatic cell and genetically modified cell therapeutics in the areas of heart, lung, and blood diseases. The program began in 2003, continued under two competitive renewals, and ended June 2021. PACT has supported cell therapy product manufacturing, investigational new drug enabling preclinical studies, and translational services, and has provided regulatory assistance for candidate cell therapy products that may aid in the repair and regeneration of damaged/diseased cells, tissues, and organs.

View Article and Find Full Text PDF

This perspective from a Regenerative Medicine Manufacturing Society working group highlights regenerative medicine therapeutic opportunities for fighting COVID-19. This article addresses why SARS-CoV-2 is so different from other viruses and how regenerative medicine is poised to deliver new therapeutic opportunities to battle COVID-19. We describe animal models that depict the mechanism of action for COVID-19 and that may help identify new treatments.

View Article and Find Full Text PDF

Organs-on-chips, also known as "tissue chips" or microphysiological systems (MPS), are bioengineered microsystems capable of recreating aspects of human organ physiology and function and are in vitro tools with multiple applications in drug discovery and development. The ability to recapitulate human and animal tissues in physiologically relevant three-dimensional, multi-cellular environments allows applications in the drug development field, including; (1) use in assessing the safety and toxicity testing of potential therapeutics during early-stage preclinical drug development; (2) confirmation of drug/therapeutic efficacy in vitro; and (3) disease modeling of human tissues to recapitulate pathophysiology within specific subpopulations and even individuals, thereby advancing precision medicine efforts. This chapter will discuss the development and evolution of three-dimensional organ models over the past decade, and some of the opportunities offered by MPS technology that are not available through current standard two-dimensional cell cultures, or three-dimensional organoid systems.

View Article and Find Full Text PDF

The medical burden of heart failure (HF) has spurred interest in clinicians and scientists to develop therapies to restore the function of a failing heart. To advance this agenda, the National Heart Lung Blood Institute (NHLBI) convened a Working Group of experts on June 2-3, 2016 in Bethesda Maryland to develop recommendations for the NHLBI aimed at advancing the science of cardiac recovery in the setting of mechanical circulatory support (MCS). MSC devices effectively reduce volume and pressure overload that drives the cycle of progressive myocardial dysfunction, thereby triggering structural and functional reverse remodeling.

View Article and Find Full Text PDF

The medical burden of heart failure (HF) has spurred interest in clinicians and scientists to develop therapies to restore the function of a failing heart. To advance this agenda, the National Heart, Lung, and Blood Institute (NHLBI) convened a Working Group of experts from June 2 to 3, 2016, in Bethesda, Maryland, to develop NHLBI recommendations aimed at advancing the science of cardiac recovery in the setting of mechanical circulatory support (MCS). MCS devices effectively reduce volume and pressure overload that drives the cycle of progressive myocardial dysfunction, thereby triggering structural and functional reverse remodeling.

View Article and Find Full Text PDF

The medical burden of heart failure (HF) has spurred interest in clinicians and scientists to develop therapies to restore the function of a failing heart. To advance this agenda, the National Heart, Lung, and Blood Institute (NHLBI) convened a Working Group of experts from June 2-3, 2016, in Bethesda, MD, to develop NHLBI recommendations aimed at advancing the science of cardiac recovery in the setting of mechanical circulatory support (MCS). Mechanical circulatory support devices effectively reduce volume and pressure overload that drives the cycle of progressive myocardial dysfunction, thereby triggering structural and functional reverse remodeling.

View Article and Find Full Text PDF

The medical burden of heart failure (HF) has spurred interest in clinicians and scientists to develop therapies to restore the function of a failing heart. To advance this agenda, the National Heart, Lung, and Blood Institute (NHLBI) convened a Working Group of experts on June 2-3, 2016, in Bethesda, Maryland, to develop recommendations for the NHLBI aimed at advancing the science of cardiac recovery in the setting of mechanical circulatory support (MCS). MSC devices effectively reduce volume and pressure overload that drives the cycle of progressive myocardial dysfunction, thereby triggering structural and functional reverse remodeling.

View Article and Find Full Text PDF

Tissue engineering aims at building 3-dimensional living substitutes that are equal to or better than the damaged tissue to be replaced. The development of such a tissue replacement requires a multidisciplinary approach and careful attention to the optimal cell source, the interactions of growth factors and extracellular milieu, and the scaffolding design. This article is a review of the tissue engineering programs of the National Heart, Lung, and Blood Institute, which support research efforts to translate novel approaches for the treatment of cardiovascular disease.

View Article and Find Full Text PDF