Objective: To develop and evaluate a supplementary educational program ("IMPACT") centered on enabling participants to consider specifically and articulate explicitly the best path for and potential impact of their research.
Design: Participants (trainees) and faculty mentors were from all areas of biomedical research. The group worked longitudinally in small, rotating groups, through a process of developing a written statement ("Impact Statement"), an overview ("Impact Storyline") and an oral presentation ("Impact Case") of their work.
A reported 96,480 people were diagnosed with melanoma in the United States in 2019, leading to 7230 reported deaths. Early-stage identification of suspicious pigmented lesions (SPLs) in primary care settings can lead to improved melanoma prognosis and a possible 20-fold reduction in treatment cost. Despite this clinical and economic value, efficient tools for SPL detection are mostly absent.
View Article and Find Full Text PDFWhite-blood-cell (WBC) assessment is employed for innumerable clinical procedures as one indicator of immune status. Currently, WBC determinations are obtained by clinical laboratory analysis of whole blood samples. Both the extraction of blood and its analysis limit the accessibility and frequency of the measurement.
View Article and Find Full Text PDFJ Med Internet Res
March 2018
Background: Parkinson's disease (PD) is the second most prevalent neurodegenerative disease and one of the most common forms of movement disorder. Although there is no known cure for PD, existing therapies can provide effective symptomatic relief. However, optimal titration is crucial to avoid adverse effects.
View Article and Find Full Text PDFBackground: Hip dysplasia leads to abnormal loading of articular cartilage, which results in osteoarthritis. The purpose of this study was to investigate the anatomic and demographic factors associated with the early onset of osteoarthritis in dysplastic hips by utilizing the delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) index as a marker of the disease.
Methods: Ninety-six symptomatic dysplastic hips in seventy-four patients were assessed with standard radiographs and a dGEMRIC scan.
Advances in the diagnosis and treatment of cartilage degeneration will be accelerated with the availability of validated biomarkers that reveal the features relevant to the health of cartilage. Using the delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) technique for evaluating tissue glycosaminoglycan as a case study, I review the types of evidence needed to validate imaging (or other) biomarkers. In addition, I present discussions about face validity and technical validity and offer a review of emerging data that provide pathophysiologic validity.
View Article and Find Full Text PDFJ Bone Joint Surg Am
February 2009
The delayed Gadolinium-Enhanced Magnetic Resonance Imaging of Cartilage (dGEMRIC) method allows for both qualitative and quantitative measurement of the spatial distribution of glycosaminoglycan [GAG] in excised cartilage. The objective of this study was to determine the effect of paraformaldehyde fixation on dGEMRIC measurements. Five bovine and seven human cartilage pieces were punched into 5-mm plugs, fixed for 18 h in 4% paraformaldehyde solution, and washed.
View Article and Find Full Text PDFMany new therapeutic strategies have been and are being developed to prevent, correct, or slow the progression of osteoarthritis. Our ability to evaluate the efficacy of these techniques, or to determine the situations for which they might provide the most benefit, critically depends on diagnostic measures that can serve as proxies for the present or predicted state of the cartilage. We focus here on a body of work surrounding the development of magnetic resonance imaging (MRI) techniques to noninvasively image the glycosaminoglycan (GAG) concentration of articular cartilage.
View Article and Find Full Text PDFThis article contains the collective views expressed at the second session of the workshop "Tissue Engineering--The Next Generation,'' which was devoted to the tools of tissue engineering: scaffolds, bioreactors, and molecular and physical signaling. Lisa E. Freed and Farshid Guilak discussed the integrated use of scaffolds and bioreactors as tools to accelerate and control tissue regeneration, in the context of engineering mechanically functional cartilage and cardiac muscle.
View Article and Find Full Text PDFWe sought to determine if a generalized relationship between the dGEMRIC index (T1Gd relaxation time) and compressive stiffness of articular cartilage could be defined across multiple samples. Osteochondral blocks were cut from 12 human tibial plateaus, six from cadaveric sources and six from total knee replacement surgeries. Each block contained submeniscal ("covered") and extrameniscal ("uncovered") cartilage regions.
View Article and Find Full Text PDFThe concentration of glycosaminoglycan (GAG) in articular cartilage is known to be an important determinant of tissue mechanical properties based on numerous studies relating bulk GAG and mechanical properties. To date limited information exists regarding the relationship between GAG and mechanical properties on a spatially-localized basis in intact samples of native tissue. This relation can now be explored by using delayed gadolinium-enhanced MRI of cartilage (dGEMRIC--a recently available non-destructive magnetic resonance imaging method for measuring glycosaminoglycan concentration) combined with non-destructive mechanical indentation testing.
View Article and Find Full Text PDFMany new therapeutic strategies have been and are being developed to correct, prevent, or slow the progression of osteoarthritis. Our ability to evaluate the efficacy of these techniques, or to determine the situations for which they might provide the most benefit, critically depends on diagnostic measures that can serve as proxies for the present or predicted state of the cartilage. Many of the magnetic resonance imaging techniques that have been emerging over the past decades appear promising in that they have shown technical validity in measuring the morphologic and molecular state of cartilage.
View Article and Find Full Text PDFT2 and T1rho have potential to nondestructively detect cartilage degeneration. However, reports in the literature regarding their diagnostic interpretation are conflicting. In this study, T2 and T1rho were measured at 8.
View Article and Find Full Text PDFBackground: The efficacy of surgical and medical treatment of osteoarthritis is difficult to assess because of the lack of a noninvasive, sensitive measure of cartilage integrity. Delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) was designed to specifically examine glycosaminoglycan changes in articular cartilage that occur during the development of osteoarthritis. Our primary goal was to compare this technique with measurement of the joint space width on conventional radiographs in patients with hip dysplasia.
View Article and Find Full Text PDFMagnetic resonance (MR) imaging of articular cartilage is important in evaluation of new surgical and pharmacologic treatments for cartilage damage. Many techniques exist for MR imaging of articular cartilage. Standard techniques for morphologic imaging of cartilage include fast spin-echo and spoiled gradient-echo imaging.
View Article and Find Full Text PDFIn the present study we examined cartilage matrix repair following IL-1-induced matrix depletion. Previous data indicated that, in some cases, chondrocytes can synthesize macromolecules to establish a functional extracellular matrix in response to a matrix-damaging insult or when placed in a three-dimensional environment with inadequate matrix. However, the conditions under which such 'repair' can occur are not entirely clear.
View Article and Find Full Text PDFThe Alliance for Cellular Signaling is a large-scale collaboration designed to answer global questions about signalling networks. Pathways will be studied intensively in two cells--B lymphocytes (the cells of the immune system) and cardiac myocytes--to facilitate quantitative modelling. One goal is to catalyse complementary research in individual laboratories; to facilitate this, all alliance data are freely available for use by the entire research community.
View Article and Find Full Text PDFWe have developed a microfabricated device for use in parallel luminescent single-cell assays that can sort populations upon the basis of dynamic functional responses to stimuli. This device is composed of a regular array of noncontact single-cell traps. These traps use dielectrophoresis to stably confine cells and hold them against disrupting fluid flows.
View Article and Find Full Text PDF