C ( Crantz) is a crucial, under-researched crop feeding millions worldwide, especially in Africa. Cassava mosaic disease (CMD) has plagued production in Africa for over a century. Biparental mapping studies suggest primarily a single major gene mediates resistance.
View Article and Find Full Text PDFWell-powered genomic studies require genome-wide marker coverage across many individuals. For non-model species with few genomic resources, high-throughput sequencing (HTS) methods, such as Genotyping-By-Sequencing (GBS), offer an inexpensive alternative to array-based genotyping. Although affordable, datasets derived from HTS methods suffer from sequencing error, alignment errors, and missing data, all of which introduce noise and uncertainty to variant discovery and genotype calling.
View Article and Find Full Text PDFBackground: Plant resistance genes (R genes) exist in large families and usually contain both a nucleotide-binding site domain and a leucine-rich repeat domain, denoted NBS-LRR. The genome sequence of cassava (Manihot esculenta) is a valuable resource for analysing the genomic organization of resistance genes in this crop.
Results: With searches for Pfam domains and manual curation of the cassava gene annotations, we identified 228 NBS-LRR type genes and 99 partial NBS genes.
Root damage caused by aluminum (Al) toxicity is a major cause of grain yield reduction on acid soils, which are prevalent in tropical and subtropical regions of the world where food security is most tenuous. In sorghum, Al tolerance is conferred by SbMATE, an Al-activated root citrate efflux transporter that underlies the major Al tolerance locus, AltSB, on sorghum chromosome 3. We used association mapping to gain insights into the origin and evolution of Al tolerance in sorghum and to detect functional variants amenable to allele mining applications.
View Article and Find Full Text PDFCassava mosaic disease (CMD), caused by different species of cassava mosaic geminiviruses (CMGs), is the most important disease of cassava in Africa and the Indian sub-continent. The cultivated cassava species is protected from CMD by polygenic resistance introgressed from the wild species Manihot glaziovii and a dominant monogenic type of resistance, named CMD2, discovered in African landraces. The ability of the monogenic resistance to confer high levels of resistance in different genetic backgrounds has led recently to its extensive usage in breeding across Africa as well as pre-emptive breeding in Latin America.
View Article and Find Full Text PDFBackground: Apple is a widely cultivated fruit crop for its quality properties and extended storability. Among the several quality factors, texture is the most important and appreciated, and within the apple variety panorama the cortex texture shows a broad range of variability. Anatomically these variations depend on degradation events occurring in both fruit primary cell wall and middle lamella.
View Article and Find Full Text PDFBackground: Acid soils comprise up to 50% of the world's arable lands and in these areas aluminum (Al) toxicity impairs root growth, strongly limiting crop yield. Food security is thereby compromised in many developing countries located in tropical and subtropical regions worldwide. In sorghum, SbMATE, an Al-activated citrate transporter, underlies the Alt(SB) locus on chromosome 3 and confers Al tolerance via Al-activated root citrate release.
View Article and Find Full Text PDFMany genome-wide association studies (GWAS) in humans are concluding that, even with very large sample sizes and high marker densities, most of the genetic basis of complex traits may remain unexplained. At the same time, recent research in plant GWAS is showing much greater success with fewer resources. Both GWAS and genomic selection (GS), a method for predicting phenotypes by the use of genome-wide marker data, are receiving considerable attention among plant breeders.
View Article and Find Full Text PDFGenome-wide association studies (GWAS) may benefit from utilizing haplotype information for making marker-phenotype associations. Several rationales for grouping single nucleotide polymorphisms (SNPs) into haplotype blocks exist, but any advantage may depend on such factors as genetic architecture of traits, patterns of linkage disequilibrium in the study population, and marker density. The objective of this study was to explore the utility of haplotypes for GWAS in barley (Hordeum vulgare) to offer a first detailed look at this approach for identifying agronomically important genes in crops.
View Article and Find Full Text PDFDisease response genes (DRGs) diverge under recurrent positive selection as a result of a molecular arms race between hosts and pathogens. Most of these studies were conducted in animals, and few defense genes have been shown to evolve adaptively in plants. To test for adaptation in the molecules mediating disease resistance in the cereals, we first combined information from the expression pattern of Sorghum bicolor genes and from divergence to the full genome of rice to identify candidate DRGs.
View Article and Find Full Text PDFWhile Simple Sequence Repeats (SSRs) are extremely useful genetic markers, recent advances in technology have produced a shift toward use of single nucleotide polymorphisms (SNPs). The different mutational properties of these two classes of markers result in differences in heterozygosities and allele frequencies that may have implications for their use in assessing relatedness and evaluation of genetic diversity. We compared analyses based on 89 SSRs (primarily dinucleotide repeats) to analyses based on 847 SNPs in individuals from the same 259 inbred maize lines, which had been chosen to represent the diversity available among current and historic lines used in breeding.
View Article and Find Full Text PDFMultilocus surveys of sequence variation can be used to identify targets of directional selection, which are expected to have reduced levels of variation. Following a population bottleneck, the signal of directional selection may be hard to detect because many loci may have low variation by chance and the frequency spectrum of variation may be perturbed in ways that resemble the effects of selection. Cultivated Sorghum bicolor contains a subset of the genetic diversity found in its wild ancestor(s) due to the combined effects of a domestication bottleneck and human selection on traits associated with agriculture.
View Article and Find Full Text PDFPatterns of linkage disequilibrium (LD) are of interest because they provide evidence of both equilibrium (e.g., mating system or long-term population structure) and nonequilibrium (e.
View Article and Find Full Text PDFHow domestication bottlenecks and artificial selection shaped the amount and distribution of genetic variation in the genomes of modern crops is poorly understood. We analyzed diversity at 462 simple sequence repeats (SSRs) or microsatellites spread throughout the maize genome and compared the diversity observed at these SSRs in maize to that observed in its wild progenitor, teosinte. The results reveal a modest genome-wide deficit of diversity in maize relative to teosinte.
View Article and Find Full Text PDFLevels of genetic variation and linkage disequilibrium (LD) are critical factors in association mapping methods as well as in identification of loci that have been targets of selection. Maize, an outcrosser, has a high level of sequence variation and a limited extent of LD. Sorghum, a closely related but largely self-pollinating panicoid grass, is expected to have higher levels of LD.
View Article and Find Full Text PDFThe photoreceptor phytochromes, encoded by a small gene family, are responsible for controlling the expression of a number of light-responsive genes and photomorphogenic events, including agronomically important phenotypes such as flowering time and shade-avoidance behavior. The understanding and control of flowering time are particularly important goals in sorghum cultivar development for diverse environments, and naturally occurring variation in the phytochrome genes might prove useful in breeding programs. Also of interest is whether variation observed at the phytochrome loci in domesticated sorghum, or in particular races, is a result of human selection.
View Article and Find Full Text PDFAm J Hum Genet
February 2002
The Duffy blood group locus (FY) has long been considered a likely target of natural selection, because of the extreme pattern of geographic differentiation of its three major alleles (FY*B, FY*A, and FY*O). In the present study, we resequenced the FY region in samples of Hausa from Cameroon (fixed for FY*O), Han Chinese (fixed for FY*A), Italians, and Pakistanis. Our goals were to characterize the signature of directional selection on FY*O in sub-Saharan Africa and to understand the extent to which natural selection has also played a role in the extreme geographic differentiation of the other derived allele at this locus, FY*A.
View Article and Find Full Text PDF