Publications by authors named "Martha Fedor"

RNAs must assemble into specific structures in order to carry out their biological functions, but in vitro RNA folding reactions produce multiple misfolded structures that fail to exchange with functional structures on biological time scales. We used carefully designed self-cleaving mRNAs that assemble through well-defined folding pathways to identify factors that differentiate intracellular and in vitro folding reactions. Our previous work showed that simple base-paired RNA helices form and dissociate with the same rate and equilibrium constants in vivo and in vitro.

View Article and Find Full Text PDF

Heart failure (HF) is a costly chronic disease that affects 5.7 million people in the United States. Home healthcare agencies are implementing initiatives to reduce hospitalizations and manage HF patients at home.

View Article and Find Full Text PDF

The glmS ribozyme is the first natural self-cleaving ribozyme known to require a cofactor. The d-glucosamine-6-phosphate (GlcN6P) cofactor has been proposed to serve as a general acid, but its role in the catalytic mechanism has not been established conclusively. We surveyed GlcN6P-like molecules for their ability to support self-cleavage of the glmS ribozyme and found a strong correlation between the pH dependence of the cleavage reaction and the intrinsic acidity of the cofactors.

View Article and Find Full Text PDF

We report what is to our knowledge the first natural RNA that regulates gene expression in response to intracellular ATP. Using a biochemical screen, we found that several putative riboswitches bind ATP in vitro. The ydaO motif specifically bound ATP and regulated expression of endogenous and reporter genes in response to ATP concentrations in Bacillus subtilis.

View Article and Find Full Text PDF

Active-site guanines that occupy similar positions have been proposed to serve as general base catalysts in hammerhead, hairpin, and glmS ribozymes, but no specific roles for these guanines have been demonstrated conclusively. Structural studies place G33(N1) of the glmS ribozyme of Bacillus anthracis within hydrogen-bonding distance of the 2'-OH nucleophile. Apparent pK(a) values determined from the pH dependence of cleavage kinetics for wild-type and mutant glmS ribozymes do not support a role for G33, or any other active-site guanine, in general base catalysis.

View Article and Find Full Text PDF

Understanding how self-cleaving ribozymes mediate catalysis is crucial in light of compelling evidence that human and bacterial gene expression can be regulated through RNA self-cleavage. The hairpin ribozyme catalyzes reversible phosphodiester bond cleavage through a mechanism that does not require divalent metal cations. Previous structural and biochemical evidence implicated the amidine group of an active site adenosine, A38, in a pH-dependent step in catalysis.

View Article and Find Full Text PDF

The glmS riboswitch belongs to the family of regulatory RNAs that provide feedback regulation of metabolic genes. It is also a ribozyme that self-cleaves upon binding glucosamine-6-phosphate, the product of the enzyme encoded by glmS. The ligand concentration dependence of intracellular self-cleavage kinetics was measured for the first time in a yeast model system and unexpectedly revealed that this riboswitch is subject to inhibition as well as activation by hexose metabolites.

View Article and Find Full Text PDF

RNAs adopt defined structures to perform biological activities, and conformational transitions among alternative structures are critical to virtually all RNA-mediated processes ranging from metabolite-activation of bacterial riboswitches to pre-mRNA splicing and viral replication in eukaryotes. Mechanistic analysis of an RNA folding reaction in a biological context is challenging because many steps usually intervene between assembly of a functional RNA structure and execution of a biological function. We developed a system to probe mechanisms of secondary structure folding and exchange directly in vivo using self-cleavage to monitor competition between mutually exclusive structures that promote or inhibit ribozyme assembly.

View Article and Find Full Text PDF

Self-cleaving hammerhead, hairpin, hepatitis delta virus, and glmS ribozymes comprise a family of small catalytic RNA motifs that catalyze the same reversible phosphodiester cleavage reaction, but each motif adopts a unique structure and displays a unique array of biochemical properties. Recent structural, biochemical, and biophysical studies of these self-cleaving RNAs have begun to reveal how active site nucleotides exploit general acid-base catalysis, electrostatic stabilization, substrate destabilization, and positioning and orientation to reduce the free energy barrier to catalysis. Insights into the variety of catalytic strategies available to these model RNA enzymes are likely to have important implications for understanding more complex RNA-catalyzed reactions fundamental to RNA processing and protein synthesis.

View Article and Find Full Text PDF

Active site guanines are critical for self-cleavage reactions of several ribozymes, but their precise functions in catalysis are unclear. To learn whether protonated or deprotonated forms of guanine predominate in the active site, microscopic pKa values were determined for ionization of 8-azaguanosine substituted for G8 in the active site of a fully functional hairpin ribozyme in order to determine microscopic pKa values for 8-azaguanine deprotonation from the pH dependence of fluorescence. Microscopic pKa values above 9 for deprotonation of 8-azaguanine in the active site were about 3 units higher than apparent pKa values determined from the pH dependence of self-cleavage kinetics.

View Article and Find Full Text PDF

We have developed a system that relies on RNA self-cleavage to report quantitatively on assembly of RNA structures in vivo. Self-cleaving RNA sequences are inserted into mRNAs or snoRNAs and expressed in yeast under the control of a regulated promoter. Chimeric RNAs that contain self-cleaving ribozymes turn over faster than chimeric RNAs that contain a mutationally inactivated ribozyme by an amount that reflects the rate at which the ribozyme folds and self-cleaves.

View Article and Find Full Text PDF

The hairpin ribozyme is a small catalytic motif found in plant satellite RNAs where it catalyzes a reversible self-cleavage reaction during processing of replication intermediates. Crystallographic studies of hairpin ribozymes have provided high resolution views of the RNA functional groups that comprise the active site and stimulated biochemical studies that probed the contributions of nucleobase functional groups to catalytic chemistry. The dramatic loss of activity that results from perturbation of active site architecture points to the importance of positioning and orientation in catalytic rate acceleration.

View Article and Find Full Text PDF

The fluorescent nucleotide analogue 8-azaguanosine-5'-triphosphate (8azaGTP) is prepared easily by in vitro enzymatic synthesis methods. 8azaGTP is an efficient substrate for T7 RNA polymerase and is incorporated specifically opposite cytosine in the transcription template, as expected for a nucleobase analogue with the same Watson-Crick hydrogen bonding face as guanine. 8-Azaguanine (8azaG) in oligonucleotides also is recognized as guanine during ribonuclease T1 digestion.

View Article and Find Full Text PDF

RNAs somehow adopt specific functional structures despite the capacity to form alternative nonfunctional structures with similar stabilities. We analyzed RNA assembly during transcription in vitro and in yeast using hairpin ribozyme self-cleavage to assess partitioning between functional ribozyme structures and nonfunctional stem loops. Complementary insertions located upstream of the ribozyme inhibited ribozyme assembly more than downstream insertions during transcription in vitro, consistent with a sequential folding model in which the outcome is determined by the structure that forms first.

View Article and Find Full Text PDF

The natural RNA enzymes catalyse phosphate-group transfer and peptide-bond formation. Initially, metal ions were proposed to supply the chemical versatility that nucleotides lack. In the ensuing decades, structural and mechanistic studies have substantially altered this initial viewpoint.

View Article and Find Full Text PDF

The hairpin ribozyme is a small catalytic RNA that accelerates reversible cleavage of a phosphodiester bond. Structural and mechanistic studies suggest that divalent metals stabilize the functional structure but do not participate directly in catalysis. Instead, two active site nucleobases, G8 and A38, appear to participate in catalytic chemistry.

View Article and Find Full Text PDF

The hairpin ribozyme is a small catalytic RNA with reversible phosphodiester cleavage activity. Biochemical and structural studies exclude a requirement for divalent metal cation cofactors and implicate one active site nucleobase in particular, G8, in the catalytic mechanism. Our previous work demonstrated that the cleavage activity that is lost when G8 is replaced by an abasic residue is restored when certain nucleobases are provided in solution.

View Article and Find Full Text PDF

Many RNA-mediated reactions in transcription, translation, RNA processing, and transport require assembly of RNA complexes, yet assembly pathways remain poorly understood. Assembly mechanisms can be difficult to assess in a biological context because many components interact in complex pathways and individual steps are difficult to isolate experimentally. Our previous studies of self-cleaving hairpin ribozymes showed that kinetic and equilibrium parameters measured in yeast agree well with parameters measured in vitro under ionic conditions that mimic the intracellular environment.

View Article and Find Full Text PDF

The application of conventional enzymological methods to the study of hairpin and hammerhead ribozymes has led to valuable insights into the mechanisms by which these small RNAs catalyze phosphodiester cleavage and ligation reactions. Here, protocols are presented for measuring rate constants for simple cleavage and ligation reactions mediated by minimal hammerhead and hairpin ribozymes under standard experimental conditions. Information is also provided to help researchers recognize and interpret more complex reaction kinetics that can be observed for ribozyme-sequence variants under a variety of reaction conditions.

View Article and Find Full Text PDF

Twenty years have passed since the first reports that certain RNAs mediate self-splicing and precursor tRNA processing reactions in the absence of proteins. An entire field emerged to learn how RNAs that lack the chemical versatility of amino acids nonetheless assemble into enzymes that accelerate chemical reactions with efficiencies that rival those of their protein counterparts.

View Article and Find Full Text PDF

Understanding the catalytic mechanisms of RNA enzymes remains an important and intriguing challenge - one that has grown in importance since the recent demonstration that the ribosome is a ribozyme. At first, it seemed that all RNA enzymes compensate for the limited chemical versatility of ribonucleotide functional groups by recruiting obligatory metal ion cofactors to carry out catalytic chemistry. Mechanistic studies of the large self-splicing and pre-tRNA-processing ribozymes continue to support this idea, yielding increasingly detailed views of RNA active sites as scaffolds for positioning catalytic metal ions.

View Article and Find Full Text PDF

The hairpin ribozyme catalyzes a reversible phosphodiester cleavage reaction. We examined the roles of conserved nucleobases in catalysis using an abasic ribozyme rescue strategy. Loss of the active site G8 nucleobase reduced the cleavage rate constant by 350-fold while loss of A9 and A10 nucleobases reduced activity less than 10-fold.

View Article and Find Full Text PDF